f(x)=8
f'(x)=0
f(x)=7x3-100x+20
f'(x)=21x2-100
f(x)=ex+x4
f'(x)=ex+4x3
f(x)=(x2+3x)(x3−1)
f'(x)=(2x+3)(x3-1)+(x2+3x)(3x2)
f(x)=(x3-1)/(x+2)
f'(x)=(4x3)(x2-1)-(x4+1)(2x)/(x2-1)2
f(x)=5326
f'(x)=0
f(x)=x-2+3000x-50
f'(x)=-2/x3+3000
f(x)=ln(x)-x3/2
f'(x)=1/x-3/2x1/2
f(x)=(x5)(sqrt(x)).
f'(x)=5x4(sqrt(x))+(x5)(1/(2(sqrt(x)))
f(x)=(x4+1)/(x2-1)
f'(x)=(4x3)(x2-1)-(x4+1)(2x)/(x2-1)2
f(x)=25x - 3600
f'(x)=25
f(x)=5x-4+2x-1-ln(200)
f'(x)=-20/x5-2/x2
f(x)=sin(x)+cos(x)
f'(x)=cos(x)-sin(x)
f(x)=(x−1)(x4+3x+2).
f'(x)=1⋅(x4+3x+2)+(x−1)(4x3+3)?
f'(x)=(2x)(x-1)2-(x2+4)(2)(x-1)/(x-1)4
f(x)=300x+72-299x
f'(x)=x
f(x)=3/x5
f'(x)=-15/x6
f(x)=5x2+3ex+ln(x)
f'(x)=10x+3ex+1/x
f(x)=((x4)(x1/2))
f'(x)=(4x3⋅x1/2)+(x4⋅1/2x-1/2)
f(x)=(x^3/2)/(x+2)
f'(x)=3/2x1/2(x+2)-x3/2(1)/(x+2)2
f(x)=560x+ln(5)-1/2
f'(x)=560x
f(x)=2x10-7x3+4/x2
f'(x)=20x9-21x2-8/x3
f(x)=x7/2-4x3+ex+1/x
f'(x)=7/2x5/2-4x3+ex-1/x2
f(x)=(x3+5)(x2−7)
f'(x)=3x2(x2−7)+(x3+5)(2x)
f(x)=(x4+5x)/(x2-3)
f'(x)=(4x3+5)(x2-3)-(x4+5x)(2x)/(x2-3)2