Integrals
Derivatives
Log Laws
Functions
Trigonometric Functions
100

y=∫ 8x3 dx

y= 2x4

100

Derive y=(2x +4) 3

dy/dx = 6(2x+4)2
100

Simplify 
log⁡216-log232

-1

100

y= Log(x), x must be

Greater than 0

100

Determine sin (pi/6)

1/2

200

y=∫ Cos x + x dx.

y= sin x + x2/2 + C 

200

Derive f(x)= (3x − 5)/(4x +7)

f'(x) = f '(x )= 41/(4x +7)2 

200

Simplify loge(1/e3x)

-3

200

Exponential functions have a _________ asymptote 

horizontal

200
Determine tan (5pi/3)

-Sqrt(3)

300

Determine the Area between the curves (TA)

y = sin (x) and y = x2+2, over the domain of -1<x<2


8.04355

300

Determine the equation of the tangent to the function f(x) = x3+2 at the point x=-1

y=3x + 3

300

Solve 

log5125 = y

3

300

An initial population of 850 increases by 6% every half year, where t is measured in years. Determine the expression that gives the population at anytime.

N(t)=850 xx 1.06^(2t)

300
2cos(x)=-1, 0<x<2pi

x=2pi/3 & x = 4pi/3

400
Determine the area bound by the x-axis and the curve y = (x-2)- 4

32/3

400

Derive y= ln(3x+5)

dy/dx=3/(3x+5)

400

log3 (x + 25) − log3 (x − 1) = 3

x=2 

400

Determine the Asymptote, Range and Domain of the following function

y=loge(-x+2)-2

Range = R

Domain = x>-2

Asymptote = x=-2

400

d/dx tan (x)

1/cos2(x)

500

The acceleration of a particle a(t) = 5 + e2t.


Given the particle has an initial velocity of 0m/s and an initial displacement of 3m.


Determine the expression for position for this object.

x(t) = 5t2/2 + e2t/4 - t/2 + 11/4

500

The position of a ball is given by the function x(t) = -4.9t2+40t+3. 

Determine the acceleration of the ball after 5 seconds

9.8

500

log9 (x − 5) + log9 (x + 3) = 1

x=6

500

Sketch and determine the key features of the following function

y=x2-4x-12

y int = -12

x int = 6, -2

tp (2, -16)


500

sqrt(2) * sin (2x) = -1, where -pi<x<pi

x1 = -3pi/8

x2 = -pi/8

x3 = 5pi/8

x4 = 7pi/8