Eigen Schmeigen
What's The Basis For Your Answer?
Puns
Lost In Space
A Little a This and a Little a That
100

This, and only this, type of matrix has an eigenvalue of 0

What is singular or non-invertible?

100

A basis for Rn is a largest set of vectors in Rn that has this property.

What is that the set is linearly independent?

100

Basis

What is the best pun for the word?

100

These are the subspaces we typically associate with a matrix A

What are:
(1) the column space; Col A
(2) the null space; Nul A
(3) the row space; Row A

Bonus:  The eigenspace associated with eigenvalues of A

100

This common problem solving technique is NOT appropriate for finding eigenvalues

What is row reduction?

200

Eigenvalues for these matrices appear along the diagonal

What is a triangular matrix?
(Alternate answer:  What is a matrix in echelon form or in REF?)

200

A basis for Rn is a smallest set of vectors in Rn that has this property.

What is that the set spans Rn?

200
Vector

What is the best pun?

200

These three properties are required for V to be a subspace.

What is:
1) V must contain the zero vector

2) V must be closed under vector addition

3) V must be closed under multiplication by a scalar

200

If A is a diagonalizable matrix, then the inverse of A has this property.

What is diagonalizable?

300

The only vector on the planet that cannot be an eigenvector.

What is the zero vector of any dimension?

300

This is the value of the algebraic multiplicity of an eigenvalue of A if A is a nxn matrix and there are n distinct eigenvalues.

What is 1?

300

Span

What is the best pun?

300

The maximum and minimum dimension of the null space for a non-zero 4-by-6 matrix A.

What is 

2 <= dim "Nul" (A) <= 5?

Max of 4 pivots ==> min dim Nul A = 6 - 4 = 2
Min of 1 pivot ==> max dim Nul A = 6 - 1 = 5

300

The dimension of the eigenspace corresponding to an eigenvalue of a matrix is bounded above by this.

What is the algebraic multiplicity of the eigenvalue?

400

The matrix

A - lambdaI 

 is this kind of matrix


What is singular or non-invertible?

400

If Rn has a basis consisting of eigenvectors of a matrix A, then A is said to be this.

What is diagonalizable?

400

Determinant

What is the best pun for this?

400

A basis for the column space of A  

A = [[1,4,5,6],[2,4,6,8],[3,4,7,10], [4,4,8,12]] ~ [[1,0,1,2],[0,1,1,1],[0,0,0,0], [0,0,0,0]]

What is:  

{((1),(2),(3),(4)), ((4),(4),(4),(4))}

400

Let S = {v1, v2, v3, ..., vp} be a linearly independent set of vectors in Rnand let A = [vv2 ... vp ].

We can conclude these three facts about S and its vectors, and these three facts about A.

What is:
S:  
(1) p<=n
(2) S does not contain the zero vector
(3) None of the vectors can be constructed from a linear combination of any of the other vectors
A: 
(1) If n = p then then A is invertible
(2) Any echelon form of A will have a pivot in every column
(3) Ax=0 has only the trivial solution



500

These are eigenvectors of the identity matrix I(i.e.the n-by-n identity matrix) 

 What is any non-zero vector in Rn?

500

Let V be a subspace of Rn with dim V = p.  A set of basis vectors for V will have these 4 key properties.

What is:
(1) they will all be elements of Rn
(2) there will be exactly p vectors in the set
(3) the set will be linearly independent
(4) the set will span V

500

Eigenspace

What is the best pun for this?

500

A basis for the row space of A  

A = [[1,4,5,6],[2,4,6,8],[3,4,7,10], [4,4,8,12]] ~ [[1,0,1,2],[0,1,1,1],[0,0,0,0], [0,0,0,0]]

(1, 0, 1, 2),  (0, 1, 1, 1)

500

This is another name for the dimension of the column space of a matrix.   

What the rank of the matrix?