Imaginary Numbers
Intercepts
Domain/Range
Solving Equations
Put in Vertex Form
100
$$5i(8 - 3i)$$
15+40i
100
$$y = 2{\left( {x - 3} \right)^2} - 2$$
x: 4 and 2 y: 16
100
$$y = {x^2} + 8x + 16$$
d: all reals r: 0 to $$\infty $$
100
$${x^2} - 16 - 8x = - 8x$$
4, -4
100
$$y = 2{x^2} + 4x + 5$$
$$y = 2{\left( {x + 1} \right)^2} + 3$$
200
$$( - 3 + 5i)( - 4 + i)$$
7-23i
200
$$y = 2{\left( {x + {5 \over 2}} \right)^2} - {9 \over 2}$$
x: -4 and -1 y: 8
200
$$y = - {1 \over 2}{x^2} + 2x - 4$$
d: all reals r: $$ - \infty $$ to -2
200
$${x^2} + 21 = - 9x + 3$$
-3, -6
200
$$y = - {x^2} + 4x - 8$$
$$y = - {\left( {x - 2} \right)^2} - 4$$
300
$${(6 + 2i)^2}$$
32+24i
300
$$y = - {x^2} - 9x - 18$$
x: -6 and -3 y: -18
300
$$y = 2{x^2} + 16x + 27$$
d: all reals r: -5 to $$ \infty $$
300
$$5{x^2} - 44 = 12x$$
22/5, -2
300
$$y = 3{x^2} + 12x + 12$$
$$y = 3{\left( {x + 2} \right)^2}$$
400
$${{2 + 2i} \over { - 2i}}$$
-1+i
400
$$y = 2{x^2} - 20x + 50$$
x: 5 y: 50
400
$$y = {\left( {x - {1 \over 2}} \right)^2} - {1 \over 4}$$
d: all reals r: -1/4 to $$ \infty $$
400
$$ - 4{x^2} + 6x - 3 = - 9{x^2}$$
$${{ - 3 \pm 2\sqrt 6 } \over 5}$$
400
$$y = {x^2} + 8x$$
$$y = {\left( {x + 4} \right)^2} - 16$$
500
$${{8 + 10i} \over {9 - 9i}}$$
$$ - {1 \over 9} + i$$
500
$$y = - {3 \over 8}{x^2} + {9 \over 4}x - {{35} \over 8}$$
x: none y: -35/8
500
$$y = - {x^2} - 3x$$
d: all reals r: $$ - \infty $$ to 2.25
500
$$8{x^2} - 13x - 10 = - 11x - 12$$
$${{1 \pm i\sqrt {15} } \over 8}$$
500
$$y = {1 \over 2}{x^2} + 3x + 7$$
$$y = {1 \over 2}{\left( {x + 3} \right)^2} + 2.5$$