Quadratics
Factoring
Exponentials
Miscellaneous
100

For the function below, find the vertex, axis of symmetry, and decreasing interval

y=3(x-4)^2 + 6

Vertex:  (4, 6)

Axis:  x = 4

Decreasing Interval:   

(-infty,4)

  

100

Factor completely:  

8ax+4bx-2ay-by

(4x-y)(2a+b)

100

State the x-intercept and y-intercept of:

y = -4^x 

x intercept:  none

y-intercept:  (0, -1)

100

Write the solutions of the statement in interval notation:

x < 6 and x < 10

(-oo,6)

200

Find the average rate of change for [-1, 2] 

y=-3x^2 + 8x - 5

5

200

Factor completely:  

x^2(a+b) - 10(a+b)x + 16(a+b)

(a+b)(x - 8)(x - 2)

200

Sketch a graph of:

y = -(1/2)^(x + 3)

200

Find the exact value of x.  


sqrt446

300

Where is the vertex:

y= x^2 + 10x + 33

(-5, 8)

300

Factor:  

64x^2 - 9y^2

(8x + 3y)(8x - 3y)

300

State the domain and range of:  

y = 3^-x

Domain:  All reals

Range:  

(0, infty)

300

Find (-x)-3  if  

2(x + 5) - 8 = -7x - 16

1/8

400

Fill in the blanks to complete the square and discover the vertex:

y = x^2 - 18x + 83

y = x^2 - 18x + "_____" + 83 "______"

y = (x-"____")^2 +"_____"

81; -81; 9; 2

Vertex = (9, 2)

400

Factor completely:  

12x2 - 6x - 6

6(2x + 1)(x - 1)

400

Find the average rate of change from x = 0 to x = 3 for the function below.  

y = -5^x

-124/3

400

Find the GCF of 

25x^2y^3 " and " 40x^7 

5x^2

500

A launched object follows the parabolic path below where y = height in meters after x elapsed seconds.  Find the maximum height and how long it takes reach that height.  

y= -4.9x^2+ 29.4x

Max height = 44.1 meters, after 3 seconds.  

500

Factor completely:  

15x2 - 17x - 4

(5x + 1)(3x - 4)

500

Where is the function increasing?

y = (3/4)^x

(-infty,infty)

500

Solve:  

12x^2-28x+5=0

x = -1/6 or 5/2