What is the center & radius, given the equation

Write the equation, given radius and center

Write the equation, given other information

Graphing

Write equation by completing the square

100

(x-2)^{2}+(y-5)^{2}=9^{2}, the center point and radius of the circle are..

(2,5) r=9

100

The center is (1,-3) and the radius is 2

(x-1)^{2 }+ (y+3)^{2 }= 4

100

Center: (2, −5) Point on Circle: (−7, −1)

(x − 2)^{2} + (y + 5)^{2} = 97

100

x^{2} + y^{2} = 64

Center: (0,0) Radius: 8

100

x^{2}+ 8x +y^{2} − 2y = 64

(x+4)^{2} + (y-1)^{2} = 81

200

(x-3)^{2}+(y-4)^{2}=25, the center point and radius of the circle are..

(3,4) r=5

200

The center is (2,-1) and the radius is 4..

(x-2)^{2} + (y+1)^{2} = 16

200

Center: (14, 17) Point on Circle: (15, 17)

(x − 14)^{2} + (y − 17)^{2} = 1

200

(x-1)^{2} + (y-3)^{2} = 36

Center: (1, 3) Radius: 6

200

x^{2} + 2x + y^{2} - 10y = 55

(x + 1)^{2} + (y − 5)^{2} = 81

300

(x+8)^{2}+(y+17)^{2}=49, the center point and radius of the circle are..

(-8,-17) r=7

300

The center is (1,-4) and the radius is 3..

(x-1)^{2} + (y+4)^{2} = 9

300

Ends of a diameter: (−17, −9) and (−19, −9)

(x + 18)^{2} + (y + 9)^{2} = 1

300

x^{2} + y^{2} + 10x − 4y = 140

Center: (-5, 2) Radius 13

300

y^{2} + 2x + x^{2} = 24y − 120

(x + 1)^{2} + (y − 12)^{2} = 25

400

(x-2)^{2}+(y+5)^{2}=289, the center point and radius of the circle are..

(2,-5) r=17

400

The center is (0,3) and the radius is √14

x^{2} + (y-3)^{2} = 14

400

Center: (0, -1) and Circumference = 50.2655

x^{2} + (y + 1)^{2} = 64

400

x^{2} + y^{2} − 6x − 10y + 16 = 0

Center: (3, 5) Radius: 4.243

400

x^{2} + y^{2} + 14x − 12y + 4 = 0

(x + 7)^{2} + (y − 6)^{2} = 81

500

(x-1)^{2}+(y-2)^{2}=20, the center point and radius of the circle are..

(1,2) r=2sqrt(5) or 4.47

500

The center is (13,-13) and the radius is 4sqrt(2)

(x − 13)^{2} + (y + 13)^{2} = 32

500

Center: (−2, 12) Area is = 28.27433

(x + 2)^{2} + (y − 12)^{2} = 9

500

x^{2} + y^{2} + 2x + 8y − 8 = 0

Center: (-1, -4) Radius: 5

500

A circle sits next to a right triangle. The circle has a radius of 5. The triangle's base and height are the same size as the circle's height and width. What is the length of the hypotenuse of the triangle?

sqrt(200) = 14.14

Click to zoom