Evaluate Function 1
Evaluate Function 2
Simplifying Functions
Composite Functions
Inverse Functions
100

Evaluate f(x) = -4x + 5, when f(10)

f(x) = -35

100

f(x) = x3 + 4,  Evaluate f(1)

f(1) = 5

100

f(x) = 2x + 1  and  g(x) = 5x-11

Find f(g(x))

f(g(x)) = 10x-21

100

Given  f(x) = x2- 6x + 14   and g(x) = 3x - 5 

Evaluate g(f(5)).

Answer: 22

100

What is the inverse of 5x-6?

f-1(x) = (x+6)/5

200

Evaluate f(x) = 3x - 2, when f(5)

f(x) = 13

200

g(x) = 2x - 12  Evaluate g(-2)

g(x) = -16

200

f(x) = -4x - 2  and g(x) = x2 + 7x

Find f(g(x)).

f(g(x))= -4x- 28x - 2

200

Given f(x) = x2 - 6x + 13  and g(x) = 3x - 6, find f(g(-6)).

Answer: 733

200

The inverse function of f(x) = 2x

f-1(x) =x/2

300

Evaluate f(x) = 2x - 6, when f(-10)

f(x) = -26

300

f(x) = x3 + 4. Evaluate f(-2)

f(x) = -4

300

f(x) = -4x - 2  and g(x) = x2 + 7x


Find g(f(x))

g(f(x))=16x2-12x-10

300

Given: f(x) = 3x- 6x + 5, and g(x) = 2x, 

find f(g(1)).

5

300

The inverse function f(x) = 2x+3

f-1(x) = (x-3)/2

400

Evaluate g(x) = x2 + 5, when g(2)

f(x) = 9

400

h(x) = (x-1)2 Evaluate h(-3)

h(x) = 16

400

g(x) = x2 - 10 Find g(-6)

g(-6)=26

400

Given: f(x) = 3x+ 5, and g(x) = x - 1, 

find g(f(2)).

16

400

True or False:The inverse function of 

f(x) = 2-x is itself.

True.

500

Evaluate g(x) = x2 - 10, when g(-5)

f(x) = 15

500

h(x) = x2 - 2x + 3 Evaluate h(-3)

h(x) = 18

500

g(x) = x2 + 5 and h(x) = x2-10x+13

Find h(g(x))

h(g(x))= x4-12

500

Given: f(x) = x2 + 2, and g(x) = -3x , 

find g(f(x)).

Answer: 9x2+2

500

The inverse function of 

f(x) = (4x-3)/5

f-1(x) = (5x+3)/4