Evaluate Function 1
Evaluate Function 2
Simplifying Functions
Composite Functions
Inverse Functions
100

Evaluate f(x) = x + 5, when f(10)

f(x) = 15

100

f(x) = x3 + 4,  Evaluate f(1)

f(1) = 5

100

f(x) = 2x + 1 Find f(x-1)

f(x-1) = 2x-1

100

Given  f(x) = (x - 3)2 + 5   and g(x) = 3x - 5 

Evaluate g(f(5)).

Answer: 22

100

f(x) and its inverse function will be reflections across the line ______. 

y = x

200

Evaluate f(x) = 3x - 2, when f(5)

f(x) = 13

200

g(x) = 2x - 12  Evaluate g(-2)

g(x) = -16

200

f(x) = -4x - 2 

Find f(-x).

f(-x) = 4x-2

200

Given f(x) = (x-3)2 + 4  and g(x) = 3x - 6, find f(g(-6)).

Answer: 733

200

The inverse function of f(x) = 2x

f-1(x) =x/2

300

Evaluate f(x) = 2x - 6, when f(-10)

f(x) = -26

300

f(x) = x3 + 4. Evaluate f(-2)

f(x) = -4

300

f(x) = x2 + 1 Find -f(x).

-f(x) = -x2-1

300

Given: f(x) = 3x- 6x + 5, and g(x) = 2x, 

find f(g(1)).

5

300

The inverse function f(x) = 2x+3

f-1(x) = (x-3)/2

400

Evaluate g(x) = x2 + 5, when g(2)

f(x) = 9

400

h(x) = (x-1)2 Evaluate h(-3)

h(x) = 16

400

g(x) = x2 - 10 Find g(x2)

g(x+3) = x2+6x-1

400

Given: f(x) = 3x+ 5, and g(x) = x - 1, 

find g(f (2)).

16

400

True or False:The inverse function of 

f(x) = 2-x is itself.

True.

500

Evaluate g(x) = x2 - 10, when g(-5)

f(x) = 15

500

h(x) = x2 - 2x + 3 Evaluate h(-3)

h(x) = 18

500

g(x) = x2 + 5 Find g(x-2)

g(x-2) = x2-4x+9

500

Given: f(x) = x2 + 2, and g(x) = -3x , 

find g(f(x)).

Answer: 9x2+2

500

The inverse function of 

f(x) = (4x)/(x+1)

f-1(x) = (-x)/(x-4)