Position functions and tangent lines
Name that derivative!
Product/
Quotient Rule
Differentiation Rules
Chain Rule
100

Using s(t)=t3+6t+8, what is the position of the particle at 2 seconds?

s(t)=28 inches

100

y=lnx, y'=

y'= 1/x (sometimes times k)

100

y=(2x/4x2)

y'=[-8x2/(4x2)2]

quotient rule

100

y=(x2+6x-3)+(x3-4)    

y'=(2x+6)+(3x2)

power rule + addition rule

100

y=(6x2-5)4, y'=

y'=48x(6x2-5)3

200

Using s(t)=t3+6t+8, what is the average velocity of the particle from [ 1 , 3 ] ?

Average velocity: 21 in/s

200

y=sinx, y'=

g(x)=cosx, g(x)'=

y'=cosx

g(x)'=-sinx

200

f(x)=(3x2-1)/(2x+5)

f(x)=[2(3x2+15x+1)/(2x+5)2]


quotient rule

200

y=(1/4)ex+x4-2

y'=(1/4)ex+4x3


power rule and ex

200

y=(1/3x3+4)-1, y'=

y'=[-x/(1/3x3+4)2]

300

Using s(t)=t3+6t+8, what is the acceleration of the particle at 2 seconds?

12 in/s2

300

y=secx, y'=

g(x)=tanx, g(x)'=

y'=secx x tanx

g(x)'=sec2x

300

y=lnxcosx

y'=(cosx/x)-lnxsinx

product rule and trig/log functions

300

y=2x

y'=2x x ln2


y=ax -> ax lna

300

y=3ln3x, y'=    

y'=[9(3lnx)3/x]

400

Using s(t)=t3+6t+8, find the acceleration of the particle when its velocity is 33 in/s.

18 in/s2

400

y=cscx, y'=

g(x)=cotx, g(x)'=

y'=-cscx x cotx

g(x)'=-csc2x

400

f(x)=square root of x(1-x2)

f(x)'=[(-5x2-1)/(2 times the square root of x)

400

f(x)=16[(x3-2x2)-(4x4+6x5-3)]

f(x)'=16[(3x2-4x)-(16x3+30x4)]

power rule, subtraction rule and constant rule

400

y=e(x^2+3x), y'=

y'=e(x^2+3x) x (2x+3)

500

Find Ltan:f(x)=4x3+ex-sinx; x=3

round to four decimal places

Ltan: y=129.0755x-1.1311

500

y=logax, y'=

y'=1/x(lna)

500

g(x)=2x(3cosx)

g(x)'=(2x x ln2 x 3cosx)+(-3sinx x 2x)


product rule, ax, and trig/log functions

500

y=xe

y'=exe-1

the 'e' trick

500

y=csc(2 root x), y'=

y'=-csc(2 root x) x cot(2 root x) x x-1/2