GCF
Difference of squares and perfect squares
Trinomials
Solve
Graphs
100

6x^2+18x-12

6 (x^2 + 3 x - 2)

100

64-p^2

(64+p)(64-p)

100

x^2+2x-24

(x-4)(x+6)

100

(x+6)^2-16=0

x=-10,-2

100

True or False. Every y-value of the graph of a quadratic function has two different x-values.

True

200

15abc^2+25a^3bc

5 a b c (3 c + 5 a^2)

200

49m^4-100n^2

(7m^2+10n)(7m^2-10n)

200

x^2 - 15 x - 100

(x + 5) (x - 20)

200

x^2-6x+9=0

x=3

200

True or false. It is possible for the graphs of two different quadratic functions to each have x=-3 as its line of symmetry and both have a maximum at y=5?

True

300

8m^2p^4-24m^3p^5

8m^2p^4(1-3mp)

300

x^2+18x+81

(x+9)^2

300

2x^2-18x+36

2(x-6)(x-3)

300

x^2 + 7 x - 170 = 0

x=-17, 10

300

Leading coefficient positive or negative?

Positive

400

10xy^3-25x^2y^3+15x^3y

5xy(2y^2-5xy^2+3x^2)

400

9x^2-16

3x-4

400

8x^2-18x-5

(4x+1)(2x-5)

400

5x^2-20x+15=0

x=1, 3

400

Vertex and axis of symmetry

Vertex: (4, -2)

Axis of symmetry: x = 4

500

49s^2t^2-36s^2t^2

13 s^2 t^2

500

x^2-26x+169

(x-13)^2

500

-2x^2-7x-3

-(x+3)(2x+1)

500

3x^2+14x-5=0

x=-5, 1/3

500

 f(0) and f(6) 

f(0)=6

f(6)=0