median, mode, mean
Quadratic’ s
Polynomial
Exponent
Addition and subtraction
100

Find the mean

12, 23, 25, 56, 76, 45, 31, 45, 67, 53, 34, 44

43.36

100
Put the quadratic equation in standard form.
3+2x2−5x=0


2x2 - 5x + 3 = 0

100

Simplify 

(2x+3)(x+7)

2x2 + 17x + 21

100


(e3)5 


e15

100

375 - 651=

- 276

200

Find the mode 

22, 45, 62, 32, 31, 22, 58, 32, 41, 29, 34

22 & 32

200
Determine the solutions for the quadratic equation.
y=(x−3)(x+2)



3, -2

200
Simplify
(9x−2)(3x+5) 


27x2+39x−10

200

X* X7

X11

200

3,527 + 1,542=

5,069

300

Find the outlier

32, 45, 41, 51, 4, 83, 56, 32, 44

4

300
Find the roots of the quadratic equation in factored form.
(x+7)(x+9)


X= -7

X= -9

300
Simplify.
(5x2−2x+8)−(7x2+2x−5) 


−2x2−4x+13

300

H12/ H2

H10

300

45 - 5=

40

400

Find the median 

34, 21, 19, 28, 19, 34, 49, 17, 35, 24, 16 

24

400

The x-intercept is:

Where the graph crosses the x-axis

400

Simplify 

(3x+1)−(5x2−5x+6)

-5x2 + 8x - 5

400
Simplify:
(−2x2)(8x5)


- 16x7

400

47,890  + 12,566= 

60,456

500

Find the median without the outlier 

45, 32, 11, 43, 38, 51, 29, 26, 49, 45, 33, 47, 36 

40.5

500

How can you determine how many solutions a quadratic function has?.





Determining how many x-intercepts the graph has

500
Simplify.
(9x2−4x+1)+(7−7x−3x2) 


6x2−11x+8

500
Simplify 
7x6∗x-2


7x4

500

34,345 + 12,643=

46, 998