Inverses
Piecewise Misc.
Transformations
Function operation
100

Find the inverse of this relation;


(0, 2) (5, 10) (7, 25) (8, 30) (10, 45)

(2, 0) (10, 5) (25, 7) (8, 30) (45, 10)

100

Write a piecewise function for 

f(x) = 2|x| - 5

without using absolute value.

 -2x - 5    x<=0

2x-5    x>0

100

Describe the transformations of the parent function:

g(x) = |x - 4| - 3


down 3, right 4

100

f(x) = x2 - 3

g(x) = 2x - 1


solve f(x) + g(x)

x2 + 2x - 4

200

Find the inverse of this function;


f(x) = 2x - 7

0.5x +3.5

200

Write a transformation for the piecewise function down by 5:

x - 2

-|x|

x - 9

200

Given f(x) = 2 + √(x),

write a rule for g(x), where g(x) is a vertical stretch by a factor of 3 and a translation to the right by 1.

4 + 2√(x+1)

200

f(x) = x2 - 3

g(x) = 2x - 1


Solve 2f(x) - g(x)

2x2 - 2x - 5

300

Are these functions inverses?


f(x) = 5x + 10

g(x) = 1/5x - 10

no

300

Evaluate:

150

300

Transform the function to the left by 5.

x + 8     if x>-5

-x + 5    if x<=-5

300

f(x) = x2 - 3

g(x) = 2x - 1


Determine f(g(-3))

46

400

Determine the domain and range of the inverse, f-1(x):


f(x) = √(x-4)

D; x>=0

R; y>=-4

400

Write a piecewise function for the graph:

*

400

f(x) = -(x+3)3

Describe the transformations on f(x) on the parent function.

Left 3, reflected over the x-axis

400

f(x) = x2 - 3

g(x) = 2x - 1


determine f(g(x))

4x2 - 4x -2

500

Determine the inverse;

f(x) = 5/(x+3) - 4

f-1(x) = 5/(x+4) - 3

500

Write the piecewise function

-x2 + 2   if -2 < x < 1

√x         if x > 1


500

The function: 

f(x) = x2 - 3

Undergoes the transformation:

g(x) = f(1/2x + 2)  

What is the resulting function g(f(x))?

g(x) = 1/4x2 + 2x + 1

500

f(x) = x2 - 3

g(x) = 2x - 1


Determine f(g(x + 1) - 2)

4x2 - 5