Definitions
Adding
Subtracting
Multiplying
Dividing
100

How many terms does this polynomial have?

3x2 + 7x - 4

3

100

(3x + 2) + (x + 5)

4x + 7

100

(x - 5) - (x + 2)

With algebra tiles

-7

7 small unshaded squares

100

2(3x + 1)

6x + 2

100

(4x - 12) ÷ 4

x - 3

200

How do we represent 2n2 + n - 5 with algebra tiles?

2 shaded large boxes, one shaded rectangle, 5 unshaded small squares

200

(x2 + 4x) + (4x2 - x)

With algebra tiles


5x2 + 3x

5 shaded large squares

3 shaded rectangles

200

(2m + 4) - (3m - 5)

Algebraically

-m + 9

200

2(5x2 + x - 3)

10x2 + 2x - 6

200

(21x + 14) ÷ 7

Algebraically

3x + 2

300

What type of polynomial is this expression?

9b - 13 + b2

Trinomial

300

(6x2 + 2x - 1) + (2x2 - x + 4)

Algebraically

8x2 + x + 3

300

(4x2 + 3x -5) - (3x2 + x + 2)

x2 + 2x - 7

300

5x(x - 3)

With algebra tiles

5x2 - 15x


300

(4x2 - 12x + 24) ÷ 4

x2 - 3x + 6

400

What are the coefficients in this expression?

-4x4 + x - 1

-4 and 1

400

(-7n2 -3n + 7) + (-2n2 + 4n + 1)

-9n2 + n + 8

400

(7g2 - 4g + 6) - (-2g2 + g - 12)

5g2 - 5g + 18

400

(-3r)(4r + 3)

Algebraically

-12r2 - 9r

400

(6x2 - 3x) ÷ 3x

With algebra tiles

3x - 1

500

What is the degree of this expression?

12m5n2

5

500

(3y2 - 4xy + 2x2) + (2xy + y2 - 5x2)

4y2 - 2xy - 3x2

500

(-3x2 + 5x - 8) - (-x2 - 2x - 4)

-2x2 + 7x - 4

500

2x(7x - 3y)

14x2 - 6xy

500

(3x2 - xy) ÷ x

3x - y