4x + 5 = 21
4x = 16 → x = 4
x + 3 > 12
x > 9
y = x + 4
x + y = 14
→ substitute → x + (x + 4) = 14
→ 2x = 10 → x = 5 → y = 9
→ (5, 9)
2³
8
(2x + 3) + (x − 5)
3x − 2
6(x − 1) = 42
x − 1 = 7 → x = 8
8 − 2x ≤ 0
−2x ≤ −8 → divide by −2 (flip sign) → x ≥ 4
2x − y = 3
x + y = 11
Add both: 3x = 14 → x = 14/3
Then y = 11 − 14/3 = 19/3
→ (14/3, 19/3)
x⁴ · x²
x⁶
(x + 6)(x + 1)
x² + 7x + 6
2x − 9 = 3x + 7
−9 − 7 = x → x = −16
3x + 4 < 19
3x < 15 → x < 5
3x + 2y = 12
4x − y = 10
Solve → x = 4, y = 0
→ (4, 0)
√50 = √(25×2)
5√2
x² − 9
Difference of squares → (x − 3)(x + 3)
Slope of y = 3x − 12
slope = 3
−6 ≤ 2x + 2 < 10
Subtract 2 → −8 ≤ 2x < 8
Divide by 2 → −4 ≤ x < 4
5x − 3y = 7
10x − 6y = 14
The second equation is 2× the first → infinitely many solutions (same line).
(3x²y)² = 9x⁴y²
9x⁴y²
4x² − 20x
Factor out 4x → 4x(x − 5)
(5x/4) − 7 = 18
5x/4 = 25 → 5x = 100 → x = 20
|x − 5| = 9
Case 1: x − 5 = 9 → x = 14
Case 2: x − 5 = −9 → x = −4
→ x = 14 or x = −4
x − 2y = −1
3x + y = 17
From first: x = 2y − 1
Plug in: 3(2y − 1) + y = 17 → 6y − 3 + y = 17
→ 7y = 20 → y = 20/7
Then x = 2(20/7) − 1 = 40/7 − 1 = 33/7
→ (33/7, 20/7)
2ˣ = 32
32 = 2⁵ → x = 5
x³ + 27
Sum of cubes → (x + 3)(x² − 3x + 9)