Solving using Square Roots
Simplifying Radical
Discriminant
Complex Numbers
Miscellaneous
100

Solve: x= 16

4, -4

100

Simplify √64 

8

100

If the discriminant b2-4ac=8, 


what type(s) of roots will the function have?

two real solutions

100

(2+4i) + (3-2i)= 

5+2i

100

Find values of a and c that will make the equation below have 2 imaginary solutions:

ax2 + 6x + c = 0

ac > 9

200

Solve: x2 = - 100 ?

10i, -10i

200

Simplify √-25 

5i

200

If the discriminant b2-4ac=-16, 


what type(s) of roots will the function have?

two imaginary solutions

200

(3+6i) + (1-2i)=

4+4i

200

Find values of a and c that will make the equation below have 2 real solutions:

ax2 + 6x + c = 0

ac<9

300

Solve: 2x2 + 3 = -47  ?

5i, -5i

300

Simplify √-8 

2i√2

300

If the discriminant b2-4ac=0, 


what type(s) of roots will the function have?

one real solution


300

(5+2i) - (-2+3i)=

7-i

300

Find values of a and c that will make the equation below has 1 real solution:

ax2 + 6x + c = 0

ac = 9

400

Solve: x2 = -27

3isqrt(3), -3isqrt(3)

400

simplify √-40

2i√10

400

3x2 - 5x + 1 = 0


what type(s) of solutions will the equation have?

two real solutions

400

(4+2i)(6-5i)=

34 - 8i

400

Solve the equation using the quadratic formula:

x2 + 6x + 15 = 0

x = -3 +/- isqrt6

500

Solve: 6x2 + 1 = -5

-i, i 

500

√-72 

4+6i

500

x2 + 2x + 8 = 0

what type(s) of roots will the function have?

two imaginary solutions

500

(4-5i)2=

-9 - 40i

500

Solve the equation using the quadratic formula:

x2 + 10x + 74 = 0 

-5 +/- 7i