∫sec2x√(tanx)dx
(2/3)(tanx3/2) + c
∫3t(e2t)dt
(3/2)te2t-(3/4)e2t + c
∫ xcos(2x2)dx
u = 2x2
∫dx/3√(3x+4)
(1/2)(3x+4)2/3
indefinite integral of f with respect to x
∫f(x)dx = F(x) + c
F'(x) = f(x)
∫tan(4x+2)dx
-(1/4)ln|cos(4x+2)| + c
∫ylnydy
(y2/2)lny - (y2/4) + c
∫sec(2x)tan(2x)dx
u = 2x
∫x3cosxdx
x3sinx + 3x2cosx - 6xsinx -6cosx + c
constant of integration
c, an arbitrary constant
∫(ln6x)dx/x
(1/7)(ln7x) + c
∫exsinxdx
(ex/2)(sinx-cosx) + c
∫(9r2)dr/(√ (1-r3))
u = 1 - r3
∫25dx/(x2-25)
(5/2)ln|(x-5)/(x+5)|+ c
integration by parts formula
∫udv = uv - ∫vdu
∫(sin(2t+1))/(cos2(2t+1)) + c
(1/2)sec(2t+1) + c
∫x3e-2xdx
e-2x(-x3/2 - 3x2/4 - 3x/4 - 3/8) + c
∫dx/(x2+9)
u = x/3
∫exsec(ex)dx
ln|sec(ex)+tan(ex)|+ c
tabular integration
a way to organize calculations of integration by parts
f(x) and its derivatives g(x) and its integrals
x2 ex
2x ex
2 ex
0 ex
x2 multiplies diagonally with ex, followed by 2x and 2. The values are added alternating positive and negative.
∫xdx/(x2+1)
(1/2)ln(x2+1) + c
∫xsin5xdx
-(x/5)cos5x + (1/25)sin5x + c
∫8(y4+4y2+1)2(y3+2y)dy
u = y4+4y2+1
∫x2e-3xdx
e-3x(-x2/3 - 2x/9 -2/27) + c
LIATE
the order of choosing "u"
L. logarithmic functions
I. inverse trig functions
A. algebraic functions
T. trig functions
E. exponential functions
Highest priority (L) to lowest priority (E)