Multiplication
Division
Brackets
Zero Index
Negative Indices
100

What is the rule for multiplying indices?

a^mxxa^n=a^(m+n)

100

What is the rule for dividing indices?

a^m/a^n=a^(m-n)

100

What is the rule when there is a power outside a bracket?

(a^m)^n=a^(m*n)

100

What is the rule when a letter or number is raised to the power of zero?

a^0=1

100

What is the rule when a base has a negative power?

a^-n=1/a^n

200

Simplify:

n^3xxn^4

=n^(3+4)

=n^7

200

Simplify:

y^9/y^4

=y^(9-4)

=y^5

200

Simplify:

(z^4)^7

=z^(4xx7)

=z^28

200

Simplify:

5^0

=1

200

Simplify:

7^-2

=1/7^2

=1/49

300

Simplify:

a^8b^3xxa^4b^7

=a^(8+4)b^(3+7)

=a^12b^10

300

Simplify:

(u^12v^8)/(u^3v)

=u^(12-3)xxv^(8-1)

=u^9v^7

300

Simplify:

(3p)^3

=3^3xxp^(1xx3)

=27p^3

300

Simplify:

x^0

=1

300

Write with a positive index.

n^-3

1/n^3

400

Simplify:

5p^2xx3p^4

=5xx3xxp^(2+4)

=15p^6

400

Simplify:

(21c^9)/(3c^5)

=21/3xxc^(9-5)

=7c^4

400

Simplify:

(2x^5)^4

=2^4xxx^(5xx4)

=16x^20

400

Simplify:

2k^0

=2xxk^0

=2xx1

=2

400

Write with a negative index.

1/c^2

c^-2

500

Simplify:

1/2k^6xx8k

=1/2xx8xxk^(6+1)

=4k^7

500

Simplify:

(-42e^8f^12)/(7e^2f^5)

=-42/7xxe^(8-2)xxf^(12-5)

=-6e^6f^7

500

Simplify:

(-2j^4k^9)^3

-2^3xxj^(4xx3)xxk^(9xx3)

=-8j^12k^27

500

Simplify:

p^0q

=p^0xxq

=1xxq

=q

500

Simplify

2z^9xx9z^-2

=2xx9xxz^(9+ - 2)

=18z^7