Find the equation of the line parallel to y= (1/2)x +2 that passes through the point (4, -5)
y = (1/2)x -7
Use an area model or distribution to multiply:
8(2x +1)
16x +8
Find the equation of the line parallel to y= -4x +1 that passes through the point (3, -6)
y = -4x + 6
Rule: (x,y) ----> (x-8, y+1)
A (1, 2) ---> A' ( , )
B (5,2) ---> B' ( , )
C (3,6) ---> C' ( , )
Rule: (x,y) ----> (x-8, y+1)
A (1, 2) ---> A' ( -7 , 3)
B (5,2) ---> B' ( -3 , 3)
C (3,6) ---> C' ( -5, 7)
Use an area model or distribution to multiply:
(x+6)(x-8)
x2 - 2x - 48
Find the equation of the line perpendicular to y= 5x +5 that passes through the point (10, 3)
y = (-1/5)x + 5
Rule: (x,y) ----> (-x, y)
A (-6, 1) ---> A' ( , )
B (-4, -3) ---> B' ( , )
C (-1, 1) ---> C' ( , )
Rule: (x,y) ----> (-x, y)
A (-6, 1) ---> A' ( 6 , 1)
B (-4, -3) ---> B' ( 4 , -3)
C (-1, 1) ---> C' ( 1, 1)
Use an area model or distribution to multiply:
(9x +7)(3x -2)
27x2 +3x -14
Solve for x:
x2 + 3x + 4 = (x-4)(x+5)
x= -12
Find the equation of the line perpendicular to y= (-1/3)x +5 that passes through the point (4, 8)
y = 3x - 4
Use an area model or distribution to multiply:
(x+3)(5x - y + 1)
x2- xy +16x - 3y +3
Solve for x:
3x2 + 18x + 6 = (3x-6)(x+5)
x = -4