Properties of Integrals
Fundamental Theorem of Calculus, Part 2
Fundamental Theorem of Calculus, Part 1
Basic Integrals 1
Basic Integrals 2
Integrals w/ Geometry
Riemann Sums
100

int [f(x)+g(x)]dx

intf(x)dx + intg(x)dx

100

d/dxint_0^x(t+1)dt

x+1

100

int_0^2 3x^2dx

8

100

int(x^3-2x^2+x+3)dx

x^4/4-(2x^3)/3+x^2/2+(3x)/1+C

100

int-9dx

-9x+C

100

Graphically represent the following: 

int_-3^2(2x+1)dx



100

This is the approximate area of the function's curve in relation to the x-axis using a Right-Hand Riemann Sum with 4 subintervals on the closed interval [-2, 2].

f(x)=3x^2+1

What is 22 units? 


200

int_1^3f(x)=3, int_3^1f(x)=?

-3

200

d/dxint_pi^x(tsint)/(t-1)dt

(xsinx)/(x-1)

200

int_-1^1 e^xdx

e^1-e^-1

200

int(sqrt(x)+x^(-2)+root(3)x^4)dx

2/3x^(3/2)+x^-1/-1+3/7x^(7/3)+C

200

int((4x^2-x)/x)dx=this

What is 

2x^2-x+C?

200

This is the exact area of the function's curve in relation to the x-axis on the closed interval [-2, 4].

What is 7 Units?

200

Approximate the are between g(x) and the x-axis from x=0 to x=1.5 using a left Riemann sum with 3 equal subdivisions.

6 units

300

int_a^af(x)dx

0

300

d/dxint_x^-1ln(t^2-1)dt

-ln(x^2-1)

300

int_(-pi/2)^(pi/2)cosxdx

2

300

int cscxcotxdx

-cscx+C

300

int((sqrt(x))^3+2root4x-1/(x^2))dx

What is 

2/5x^(5/2)+8/5x^(5/4)+1/x+C?

300

This is the exact area of the function's curve in relation to the x-axis on the closed interval [0, 12].

What is 

-15/2+2\pi

Units?

300

This is the approximate area of the function's curve in relation to the x-axis using a Midpoint Riemann Sum with 3 subintervals on the closed interval [1, 10].

What is 91 Units?

400

int_1^3f(x)=4 and  int_3^6f(x)=12, 

int_1^6f(x)=?

16

400

d/dxint_0^(2x^2+x)t(t-2)^2dt

(2x^2+x)(2x^2+x-2)^2(4x+1)

400


int_1^4 sqrtx - 2x \ dx

-10.33

400

int 4/sqrt(1-x^2)dx

4sin^-1x+C

400

int (x-2)(3x^2-7x)dx

What is 

3/4x^4-13/3x^3+7x^2+C?

400

Evaluate the Integral

int_-1^1 1-|x| dx

      

1

400

This is the approximate area of the function's curve in relation to the x-axis with appropriate units using a Trapezoidal Sum with 4 subintervals on the closed interval [0, 4].

What is 30.5 milligrams per centimeter?

500

int_2^9f(x)=20 and  int_4^9f(x)=11, 

int_2^4f(x)=?

9

500

F(x)=∫_(x^3)^(x^4) 1/(1+t^2) dt

(4x^3)/(1+x^8)-(3x^2)/(1+x^6)

500

int_1^2(1/x^2+1/x+1)dx

3/2+ln2

500


17

500

int(3e^x+1/x-1/x^2)dx

3e^x+ln|x|+1/x+C

500

Evaluate the Integral (hint: graph and use geometric formula)

int_-3^3 \sqrt(9-x^2)

(9\pi)/2

500

What is the trapezoidal sum approximation for 

int_4^14f(x)dx

using three subintervals as indicated by the table

189/2 or 94.5