Integration Methods
Series
Parametric Equations
Polar Equations
100

\int 1/(x(x+1)) dx

ln(x)-ln(x+1)+C

100

1+1/3+1/9+1/27+...

3/2

100

What is a parametric representation for

x^2+y^2=1

(x(t),y(t))=(cos(t),sin(t))

100

Graph

r=2, 0\leq\theta\leq 2\pi

200

\int_0^1 xe^x dx

1

200

Does the series converge or diverge?

\sum_{n=1}^\infty 2/n^2

Converges.

200

Find the Cartesian equation for

(x(t),y(t))=(t+1,2t-1)

y=2x-3

200

Graph

r=\theta, 0\leq\theta\leq2\pi

300

\int 1/\sqrt{1-x^2} dx

sin^{-1}(x)+C

300

Does the series converge or diverge?

\sum_{n=1}^\infty 1/(2^n-1)

Converges.

300

Calculate dy/dx for

(x(t),y(t))=(sin^2t,cost)

-1/2 sec(t)

300

Convert the polar coordinates in Cartesian:

(2,\pi/3)

(1,\sqrt{3})

400

\int x/\sqrt{x^2+16} dx

\sqrt{x^2+16}+C

400

Does the series converge or diverge?

\sum_{n=1}^\infty (n^2+3n-1)/(1-2n^2)

Diverges.
400

Set up the integral (don't solve) for the arc length of

(x,y)=(2cos t,sin t), 0\leq t\leq 2pi

\int \sqrt{4sin^2t+cos^2t} dt

400

Find dy/dx of

r=\theta

dy/dx=(sin(\theta)+\theta cos(\theta))/(cos(\theta)-\theta sin(\theta))

500

\int_{-2}^2 1/x^2 dx

Not defined.

500

What is the interval of convergence for the series?

\sum_{n=1}^\infty (x/3-2)^n

(3,9)

500

Set up the integral (do not solve) for area enclosed by

(x,y)=(2cos t,sin t), 0\leq t\leq 2pi

-2\int_0^{2\pi} sin^2(t) dt

500

Find arc length of

r=sin(\theta), 0\leq \theta\leq \pi

pi