∫ xex dx
ex(x-1)+C
∫(2x)·cos(x2) dx
sin(x2)+C
∫1/x dx
ln|x|+C
∫3/(x2-4) dx
(3/4) ln|(x-2)/(x+2)|+C
∫1/(x2√(x2-4)) dx
(1/4)((√x2-4)/x)+ C
∫ ln(x) dx
xln(x)-x+C
∫1/(1+(3x+2)2) dx
(1/3)arctan(3x+2)+C
∫ 5x·cos(x2) dx
(5/2)sin(x2) +C
∫(x+3) / ((x+1)(x-2)) dx
(4/3) ln|x+1|-(1/3)ln|x-2|+C
∫1/√(16-x2)dx
arcsin(x/4)+C
∫ x2 cos(x) dx
x2sin(x)+2xcos(x)-2sin(x)+C
∫ x·√(x2+1) dx
(1/3)(x2+1)3/2+C
∫ 1/√(9-x2) dx
arcsin(x/3)+C
∫(2x2+3x+1) / ((x+1)(x2-1))dx
(3/2)ln|x-1|+(1/2)ln|x+1|+C
∫1 / (x2√(x2-16)) dx
-(√(x2-16)) / (16x2)+C
Using the bounds from 0 to 1, evaluate ∫ xln(x) dx
-1/4
Using the bounds from 1 to 2, evaluate ∫ x/(x2+1) dx
(1/2)ln(5/2)
Using the bounds from 2 to 3, evaluate ∫ 1/(x2-1) dx
Using the bounds from 2 to 3, evaluate ∫(5x+1)/(x2 - 1) dx
7ln(2)-2ln(3)
Using the bounds from 0 to 2, evaluate ∫x2 / (√4-x2) dx
4pi/3
Using the bounds from 0 to pi, evaluate ∫ xsin(x) dx
pi
Using the bounds from 0 to 1, evaluate ∫ x3/(x4+1)2 dx
1/8
Using the bounds from 0 to 1, evaluate ∫xex^2 dx
(1/2)(e-1)
Using the bounds from 0 to 1, evaluate ∫(x3+2x2+3x+4) / ((x2+1)(x+1))dx
1+ln(2)+(pi/2)
Using the bounds from 2 to 3, evaluate ∫x3 / (x2 - 4)3/2 dx
((3√5)/2) + (5/2)ln((3+√5)/2)