Simplify
Solve
Graphs
Adding, Subtracting, Multiplying, Dividing Integers
Random
100

Simplify the following expression: 3(x2-y)-9(x2+2y)

3x2 - 3y - 9x2 - 18y

-6x- 21y

100

Solve for t: 5t + 40=60

5t = 20

t=4

100

What is the domain and range? Express in interval notation.

Domain: (negative infinity, infinity)

Range: [-4, infinity)

100

-6 - 4

-10

100

Which of the following tables represents a function?

3, 4, 5, 8

200

Simplify the following expression: -(3x-2y)+5(x2-3y)

-3x + 2y + 5x2 - 15y

5x- 3x - 13y

200

Solve for 5x: 8(x - 1) - 4x + 6 = 10

8x - 8 - 4x + 6 = 10

4x - 2 = 10

4x = 12

x= 3

5(3)=15

200

What is the domain and range of the function below?

Domain: (negative infinity, infinity)

Range: (negative infinity, infinity)

200

(-9)(-2)(-3)

-54

200

Simplify the following expression: (4x2)(3x4)

12x6

300

If f(x)= 2x2+6x-12, evaluate when f(-3).

-12

300

Given the equation 7x + 6y - 2x + 3 = 3x, if x = -3, what is y?

7(-3) + 6y - 2(-3) + 3 = 3(-3)

-21 + 6y + 6 +3 = -9

6y-12 = -9

6y = 3

y = 3/6 or 1/3

300

The graph below represents f(x). At what interval(s) is the function decreasing?


(negative infinity, -1) (1, infinity)

300

6 + 4 - 7 - 8 +10

-5

300

Simplify the following expression using the appropriate power rule(s): (5x-1)(2x-4)

10x-5

10/x5

400

Given f(x)=4x-5, find -3f(x) - 6x+10.

-3(4x-5) - 6x + 10

-12x + 15 - 6x + 10

-18x + 25

400

Joe’s weekly salary s, in dollars, from driving his taxi x miles per week is given by the equation s = 19x - 10(x - t), where t is a constant.  If Joe drove 2 miles last week and earned $48, what is the value of t?

48 = 19(2) - 10(2 - t)

48 = 38 - 20 + 10t

48 = 18 + 10t

30 = 10t

3 = t

400

The graph below represents the function g(x). At what interval(s) is the g(x)>0?

(-7, 0) (7, infinity)

400

6 - (-8)

14

400

Which of the following numbers is NOT a rational number?

14, 3/5, 3.555555, 5.63754..., 0, 23.345345345

5.63754...

500

Given f(x)=4x2 - 3x - 2 and g(x)=2x2 + 3x + 4, find (g-f)(x).

2x2 + 3x + 4 - (4x2 - 3x - 2)

-2x2 + 6x + 6

500

If y=ax, where a is a constant, and y=45when x=9, what is the value of y when x=7?

45 = a(9)

5=a

5(7) = 35

500

Using interval notation, identify the increasing and decreasing intervals of the function below:

Increasing: (negative infinity, -1) (5, infinity)

Decreasing: (-1, 5)

500

-9 + 10 - 12 + 3 - 5 + 6

-7

500

Is the following relation a function? Explain why or why not.

Independent variable: each automobile's unique license plate number

Dependent variable: an automobile in the state of Missouri

It is a function because there is only one unique license plate number for every automobile.