Quadratic Inverse
Cubic Inverse
Domain Restriction
Average Rate of Change
All Inverses
100

Find the domain of the INVERSE of the following graph


[0, oo)

100

Find the domain and range of the INVERSE

f(x)=x^3 -5

Domain:

(-oo,oo)

Range:

(-oo,oo)


100

What restriction could be placed on the domain to make the inverse a function?


[0,oo)

100

Find the average rate of change.


4/2=2

100

Find the inverse of the set of points.

(0,0) (-2,7) (5,15)

(0,0) (7,-2) (15,5)

200

Find the vertex of the INVERSE function.

f(x)=(x-4)^2 +5

(5,4)

200

Find the point of symmetry.

f(x)=(x-1)^3-2

(1,-2)

200

What restriction could be placed on the domain to make the inverse a function?


[3,oo)

200

Find the average rate of change.


0/2=0

200

Find the inverse equation from the original algorithm.

Starting with a number,

Add 3

Take the cube root

Multiply the quantity by 4

Divide 4

Cube

Subtract 3

f^-1(x)=(x/4)^3-3

300

Find the domain and range of the graph.


Domain: 

(-oo,oo)

Range:

[1,oo)

300

Determine the intervals of increasing and decreasing.

f(x)=-3x^3

Increasing: never

Decreasing: 

(-oo,oo)

300

What restriction could be placed on the domain to make the inverse a function?

f(x)=(x+4)^2-2

[-4,oo)

300

Find the average rate of change.

(-3,5) and (4,9)

(9-5)/(4--3)=4/7

300

Find the inverse equation from the original algorithm.

Starting with a number,

Double the number

Square the quantity

Subtract 7 from the result

Add 7

Square root

Divide 2

f^-1(x)=sqrt(x+7)/2

400

Find the equation of the inverse function.

f(x)=-x^2-3

y=-x^2-3

x=-y^2-3

x+3=-y^2

-x-3=y^2

f^-1(x)=sqrt(-x-3)

400

Find the equation of the inverse.

f(x)=-5x^3+6

y=-5x^3+6

x=-5y^3+6

x-6=-5y^3

(x-6)/-5=y^3

f^-1(x)=root(3)((x-6)/-5)

400

What type of restriction would result in the following inverse graph?

(-oo,1]

400

Find the average rate of change.

f(x) = 4x^2+7

[-2,3]

4(-2)^2+7

4(4)+7

16+7=23

4(3)^2+7

4(9)+7

36+7=43

(43-23)/(3--2)=20/5=4

400

Find the inverse equation.

f(x)=(x^2+4)^3

x=(y^2+4)^3

root(3)(x)=y^2+4

root(3)(x-4)=y^2

f^-1(x)=sqrt(root(3)(x)-4)


500

Find the equation and domain of the INVERSE.

f(x) = 2x^2 -4

y=2x^2-4

x=2y^2-4

x+4=2y^2

(x+4)/2=y^2

f^-1(x)=sqrt((x+4)/2)

[-4,oo)

500

Find the point of symmetry of the INVERSE function.

f(x)=-(x+2)^3-6

x=-(y+2)^3-6

x+6=-(y+2)^3

-x-6=(y+2)^3

root(3)(-x-6)=y+2

root(3)(-x-6)-2=y

(-6,-2)

500

Name 3 possible restrictions to ensure the inverse would be a function.

f(x)=2x^2-5

[0,oo)

(-oo,0]

[1,oo)

500

Find the average rate of change

f(x)=2(x-4)^3+1

[1,4]

f(1) = 2(1-4)^3+1

f(1)= 2(-27)+1

f(1)=-53

f(4)=2(4-4)^3+1

f(4)=1

(1--53)/(4-1)

54/3=18

500

Find the inverse equation.

f(x)=sqrt(5x^3)+1

x=sqrt(5y^3)+1

x-1=sqrt(5y^3)

(x-1)^2=5y^3

((x-1)^2)/5=y^3

f^-1(x)=root(3)(((x-1)^2)/5)