Distributive Law
Index Law
Linear Equations
Substitution
Factorising
100

4 ( A + B ) = 

4A + 4B

100

23 x 26 = 

 =(2x2x2) x (2x2x2x2x2x2) =

29

100

4n - 2 = 18

n = ?

4n = 18 + 2

n = 5

100

(m=7), (n=4), (p=12)...solve the following:

mn = 

 mn = 7x4 

= 28

100

Factorise the following:

2x + 4 = 

HINT: (think about the highest common factor!)

= 2 (x + 2)

200

6 ( B - 8 ) = 

6B - 48

200
3/ 3=

= (3x3x3x3x3x3) / (3x3x3x3) = 


32

200

2n - 5 = 9

n = ?

2n = 9 + 5

n = 7

200

(m=7), (n=4), (p=12)...solve the following:

p / n

= 12 / 4

= 3

200

Factorise the following:

5x - 15 = 

HINT: (think about the highest common factor!)

 = 5 (x - 3)

300

2a ( a + 5 ) = 

2a+ 10a

300

113 x 113 = 


(HINT = don't solve - just collect like terms)

116

300

2n + 32 = 31

n = ?

2n = 31 - 9

n = 11

300

(m=7), (n=4), (p=12)...solve the following:

7m - p

 = 49 - 12

 = 37

300

Factorise the following:

12xy + 4x = 

HINT: (think about the highest common factor!)

 = 4x ( 3y + x )

400

5b ( -b + 4 ) = 

-5b2 + 20b

400

88 / 8=

86

400

n2 + (5 x 3) = 51

n = ?

n2 = 51 - 15

n = 6

400

(m=7), (n=4), (p=12)...solve the following:

m X n2  = 

7 x 16

= 70 + 42

= 112

400

Factorise the following:

-8ab - 20a = 

HINT: (think about the highest common factor!)

-4a ( 2b + 5)

500

-4n ( 2n - 12) = 

-8n2 + 48n

500

p7 x p/ p=

p13

500

16 - n2 = 7

n= 16 - 7

n = 3

500

(m=7), (n=4), (p=12)...solve the following:

m2 + n+ p2 = 

49 + 16 + 144

=65 + 144

 = 209

500

Factorise the following:

5a2 - 10a3

HINT: (think about the highest common factor!)

5a2 (1 - 2a)