Radian Measure
Angle Formulas
Transformation of trigonometric function
Proving Trigonometric Identities
formula
100
π radian = ?
180°
100
sin(a)cos(b)-cos(a)sin(b)
Simplify sin(a-b)...
100
period π/2 amplitude 0.5 horizontal translation 0 equation of the axis y=0
Y=0.5cos(4x)
100
A:=sinxcosy+cosxsiny B:=sinxcosy-cosxsiny
A:sin(x+y)= B:sin(x-y)=
100
y=1/sinx y=1/cosx y=1/tanx
y=cscx=? y=secx=? y=cotx=?
200
convert each radian measure to degree 3π/6=?
3(180°)/=3(30°)=90°
200
(√6−√2)/4
Determine the exact value if each trigonometric ratio. Cos(75°)=
200
period π/2 amplitude 2 horizontal translation π/4 to the left equation of the axis y=4
Identify the key characteristics of Y=-2cos(4x+π)+4, and sketch its graph. Check your graph with a graphing calculator.
200
LS=sin2x/1+cos2x =2sinxcosx/1+2cos²-1 =2sinxcosx/2cos²x =sinx/cosx =tanx=RS
Prove that sin2x/1+cos2x=tanx
200
a=max-min/2
lal is the amplitude and a=?
300
what is radian?
the size of an angle that is subtended at the centre of a circle by an arc with a length equal to the radius of the circle a/r=r/r=1
300
sinx=cos(π/2 - x) =cos(π/2)cosx+sin(π/2)sinx = (0)(cosx)+(1)(sinx) =0+sinx =sinx
Use compound angle formulas to verify the following cofunction identities. sinx=cos(π/2 - x)
300
picture 3 300
Sketch each graph for 0≤x≤2π. Verify your sketch using graphing technology. Y=3sin(2(x-π/6))+1
300
LS=sinxcotx =(sinx)(cosx/sinx) =sinxcosx/sinx =cosx =RS
prove LS=RS sinxcotx=cosx
300
3x+9x=5+7 12x=12 x=1
solve each equation to two decimal place where neccessary 3x-7=5-9x
400
π radians=180° π radians/π=?
180°/π=57.3%
400
cosπ/3;1/2
Rewrite each expression as a single trigonometric ration, and then evaluate the ratio. cos5π/12 cosπ/12+sin5π/12 sinπ/12
400
reflection in the x-axis. horizontal stretch by a factor of 4
Sketch each graph for 0≤x≤2π. Verify your sketch using graphing technology. f(x)=sin(x-π)-1
400
cos(2(π/3))=cos(2π/3)=-1/2 1+2sin²(π/3)=1+2*((√3)/2)² =1+6/4=10/4=5/2 not equal
Show this question is not an identity. cos2x=1+2sin²x
400
true sin²=1-cos²x cos²x=1-sin²x
state whether each relationship is true or false
500
convert each of the following angles to radians 1).30°
30°(π/180°)=π/6=0.52
500
Let C=x+y and letD= x-y. cosC-cosD =cos(x+y)-cos(x-y) =cosx cosy - sinx siny - (cosx cosy - sinx siny) =-2sinxsiny (c+d)/2=(x+y-x+y)/2=x (c-d)/2=(x+y-x+y)/2=y So cosC -cosD=-2sin((c+d)/2)sin((c+d)/2)
Prove cosc - cosd=-2sin((c+d)/2)sin((c-d)/2)
500
Start with graph of y=sinx Reflect in the x-axis and stretch vertically by a factor of 2 to produce produce graph of y=-2sinx Translatπ/4 units to the right to produce graph of y=-2sin(0.5(x-π/4)) Tranlate 3units up to produce graph of y=-2sin(0.5(x-π/4))+3
Create a flow chart that summarises how you would use transformations to sketch the graph of f(x)=-2sin(0.5(x-π/4))+3
500
(cos²x-sin²x)/(cos²x+sinxcosx) =[(cosx-sinx)(cosx+sinx)]/[(cosx)(cosx+sinx)] =(cosx-sinx)/cosx =cosx/cosx-sinx/cosx =1-tanx
Prove this identity. (cos²x-sin²x)/(cos²x+sinxcosx)=1-tanx
500
sinxcosy+cosxsiny cosxcosy-sinxsiny
sin(x+y)=? cos(x+y)?