Log to Exponential
Solve for x
Exponential Equations to log
Condense the log
Solve for X (again but harder)
100

log(2x+8)=2

102=2x+8

100

logx(25)=2

x=5

100

3x+12=2

log22=3x+1

100

log52+log52

log54

100

log4(x2−2x)=log4(5x−12)

X=3, X=4

200

log9(3x)=2

92=3x

200

log2x+3(25)=2

x=1

200

3x+316=45

log645=3x+31

200

3log23+log25

log2135

200

log(6x)−log(4−x)=log(3

x=4/3

300

log4(5x-6)=2x-4

42x-4=5x-6

300

logx(10+32x)=3

x=5

300

6x2+3x+14x+56=67

log4x+5667=6x2+3x+1

300

log93x-log93

log9(3x/3)

300

ln(x)+ln(x+3)=ln(20−5x)

x=2

400

log6(7x)=67

667=7x

400

log5(2x)=5 


(This equation will be in decimal form, however it is a 1 digit decimal, don't worry)

x=1162.5

400

3x2+2x-1=56(134/2x)

log563x2+2x-1=134/2x

400

3log23-log25

log2(27/5)

400

log3(25−x2)=2

x=-4,x=4

500

log33x+34(34x+33)=1234

(33x+34)1234=34x+33

500

log2(x+2)+log2(3)=log2(27)

x=7

500

log(w)+log(w−21)=2

log(w2−21w)=2

500

5log55-9log51

log5(3125/1)

500

log3(x)+1log39xx

x=1/9