Convert to Exponential Form:
log_2(8)=x
2^x=8
Solve for x:
log_3(x-3)=log_3(55)
x=58
Condense the Logarithms:
log_3(2x)-log_3(5y)
log_3((2x)/(5y))
Solve using Logarithms. Round the answer to 3 decimals if needed if necessary:
6^x=90
x=2.511
log_3(1/27)=
-3
3e2(4e3)e-4
12e
5^(2x)=25
x = 1
Convert to Logarithmic Form:
4^y=x
log_4(x)=y
Solve for x:
log_5(x+6)=log_5(3x)
x=3
Completely Expand the Logarithm:
log((2x)/y)
log(2)+log(x)-log(y)
Solve Using Logarithms. Round the answer to 3 decimals if necessary:
3^(7x)=108
x=0.609
log241
0
(2e)-4(2e)3
1/(2e)
5*2^x=320
x=6
Convert to Exponential Form:
log_(x-1)(4)=2y
(x-1)^(2y)=4
Solve for x:
log(2)+log(x)=log(x+12)
x=12
Condense the Logarithms:
2log_4(3)-2log_4(x)+4log_4(y)
log_4((9y^4)/x^2)
Solve by Converting:
log_4(x)=5
x=1024
log_4(x)=-5
x = 1/1024
((e^6)(2e^9))/(4e^-11)
e26/2
3^(2x)=27
x=3/2
Convert to Exponential Form:
2log_(3x)(5-z)=4y
(3x)^(2y)=5-z
or
(3x)^(4y)=(5-z)^2
Solve for x:
3log(4)-log(x)=log(2)
x=32
Condense the Logarithms:
3log_5(x)-4log_5(2)-5log_5(z)+3log_5(3)
log_5((27x^3)/(16z^5))
Solve using Logarithms. Round the answer to 3 decimals if necessary:
4^(x/3)=60
x=8.860
log 100
2
(4e3)3
64e9
Round to 3 decimals if necessary.
2^(3x)-7=13
x = 1.441
Convert to exponential Form:
logz^(x+4)=2y-7
z^(2y-7)=x+4
Solve for x:
2log(x)=log(3x+4)
x=4
-1 is an extraneous solution
Completely Expand the Logarithm:
ln((3x^6y^7)/(7z^5))
ln(3)+6ln(x)+7ln(y)-ln(7)-5ln(z)
Solve using Logarithms. Round the answer to 3 decimals if necessary:
4^(x-2)=100
x=5.322
log7x(7x)5
5
((e^-6)(2e^5))/(6e^4)
1/3e5
256(1/2)x=642x+5
x= -15/4