Expanding
Condensing
Rewriting
Evaluating
(Level 1)
Evaluating
(Level 2)
100

log7(3x)

log73 + log7x

100

7log3

log3x7

100

log2(8) = 3

23=8

100

log524 = log5(x+2)

24 = x+2

24-2 = x

x= 22

100

log(3x − 2) = 2

102=3x-2

100=3x-2

102=3x

x= 102/3

x=34

200

log2(6x)3

3log26 + 3log2x

200

xlog23 - log24

log2(3x/4)

200

logx2=4

x4=2

200

log64x = log6100

4x = 100

x = 100/4

x = 25

200

log5(2x+3)=2

52= 2x+3

25=2x+3

25-3=2x

22=2x

x=11


300

log5(2x4y)

log52 + 4log5x + log5y

300

(2x)log37 - 3log3x

log3(72x/x3)

300

log3(x) = 5

35 = x

300

2log2x = 4

24 = x2

16 = x2

x=4
300

logx=1−log(x−3)

log(2) + log(x-7) = 1

log(2x-14) = 1

101=2x-14

10+14=2x

24=2x

x=12


400

log4(7x/2)2

(2log47 + 2log4x) - 2log42

400

log2x- 3log2y + 3log2x

log2(x4/y3)

400

42 = x+2

log4(x+2) = 2

400

log2(5x+3) = 3

23=5x+3

8=5x+3

8-3=5=5x

x=1

400

log(x) + log(x-1) = log(4x)

log (x *(x-1)) = log(4x)

log(x2-x) = log(4x)

x2-x=4x

x2=5x

x=5

500

log2(4x2/3x)

(log24 + 2log2x) - (log23 + log2x)

500

4log4(x-2) - log4x

log4((x-2)4/x)

500

log4x(x+4) = 3

(4x)3 = x+4

500

log2(x+17) = 3log22

x+17 = 23

x+17 = 8

x = -9

500

ln(5) + ln(x) - ln(6) = ln(5)

ln(5x) - ln(6) = ln(5)

ln(5x/6) = ln(5)

(5x)/6 = 5

5x = 6(5) = 30

x=30/5 = 6