From Log to Exponential
Properties of Logs
Properties of Logs
From Exponential to Log
Solve for the Variable
100
log(x)=y

10y=x

100
log(2)+log(5) = log(?)
log(10)
100

How can you rewrite xlog(30)? 

log(30^x)

100

2y=x

log2(x)=y

100

1.05x=5

x~33
200
The log, base 4, of 64 is 3. 

43=64

200
log(2)-log(5)=log(?)
log(2/5)=log(0.4)
200
log(90)=log(?)+log(?)
The ? are any two numbers that multiply to 90
200

3x=y

log3(y)=x

200

2.2x=1

x=0
300

log2(42)=x

2x=42

300
log(30) = log(?)-log(?)
The ? are any two numbers such that the first number divided by the second number equals 30.
300
log(13)+log(?)=log(104)
? = 8 because 13*8=104
300

t2=9

logt(9)=2

300

3.21x=29

x~2.89
400

the log of 80 equals x

10x=80

400
log(?)-log(7)=log(126)
? = 882 because 882/7=126
400
What is the quotient property of logs? 
log(b)-log(a)=log(b/a)
400

by=x

logb(x)=y

400

(1/2)x=4

x=-2
500

log(1/2)(y)=12

(1/2)12=y

500
If xlog(3) equals log(81), what is x? 
xlog(3) = log(3^x) 

3^x = 81
x=4

500
if log(16384)=xlog(4), what is the value of x?
log(16384)=log(4^x)

4^x=16384
x=7

500

dh=u

logd(u)=h

500

2(3x)=1062882

x=12