Expand
log_3(x^2/4)
2log_3x-log_3 4
log56
1.7482
3^x=50
x=log_3 50 ~~3.5609
log(5x-1)=log(3x+7)
x=4
A population can be modeled by:
P(t)=425e^(rt)
What is the initial population?
425
Expand
ln(x*y)
ln(x)+ln(y)
ln8
2.0794
2^(x+1)-4=5
x=log_2 9-1~~2.1700
ln(5)+ln(x^2)=ln(125)
x=+-5
A snail population can be modeled by:
P(t)=300,000e^(.05t)
What will be the population in 5 years?
385,208 snails
Condense
log(6)+2log(x)
log(6x^2)
log_8 103
2.2288
4e^(-3x)=7
x=(ln(7/4)/-3)~~-.1865
ln(x)-ln(8)=2
x=8e^2~~59.1124
A population can be modeled by:
P(t)=250e^(.023t)
How many years will it take to reach a population of 3000?
108 years
Condense
5lnx-(2lny+3lnz)
ln(x^5/(y^2z^3))
log_(1/2)5
-2.3219
3(1/2)^x=6
x=log_(1/2)2=-1
logx-(log2+log3)=1
x=60
A population can be modeled by:
P(t)=a_0e^(.03t)
If after 45 years the population is 74,000 people, what was the initial population?
19,184 people
Condense
eLog_7x^2+pilog_7sqrty
log_7(x^(2e)sqrty^pi)
log_sqrt2 81
12.6797
1/(2^(-5x))=1/2
x=log_2(2)/5=-1/5=-0.2
DAILY DOUBLE
Inverse Functions
DAILY DOUBLE
Half-life