Evaluate (No Calculators)
Expand Logs
Condense Logs
Solve for x
Logarithm Graph
100

log2(8)

3

100

log3(13y)

log3(13) + log3(y)

100

log3(a) + log3(19)

log3(19a)

100

52x-1 = 57

x = 4

100

Parent graph: log2(x)

Write an equation with transformation: 2 units down

log2(x) - 2

200

log3(1)

0

200

log6(x2/y)

2log6(x) - log6(y)

200

log2(a) - log2(b)

log2(a/b)

200

log4(999) = x

4.982

200

Parent graph: log2(x)

Write an equation with transformation: 3 units to the right

log2(x-3)

300

log7(1/49)

-2

300

log(5a2b6)

log(5) + 2log(a) + 6log(b)

300

4log3(x) - 3log3(y)

log3(x/ y3)

300

47x = 64x-2

x = - 3/2  or -1.5

300

Parent graph: log2(x)

Write an equation with transformation: 5 units left, 3 units down

log2(x+5) - 3

400

logx64 = 2

8

400

log2(3x2y3 / 10g3)

log2(3) + 2log2(x) + 3log2(y) - log2(10) - 3log2(g)

400

log5(x2) - 2log5(y) - log5(z)

log5(x2 / y2z)

400

5(3x)= 50

Include 3 decimal places

2.095

400

Where is the asymptote for the function:

log2(x - 2) - 3

x = 2

500

log64(x) = 2/3

1/9

500

log4(5x2y47 / 6z3)

log4(5) + 2log4(x) + log4(y) + 7log4(4) - log4(6) - 3log4(z)

500

log5(3) + 3log5(a) + 7log5(b) - log5(c)

log5(3a3b7 / c)

500

3 * (6^x)-10 = 80

1.898

500

What is the domain and range of the function:

log2(x + 3) - 250