De Morgans
if p then q
p
therefore q
modus ponens
(p v q) = (q v p)
Commutation
if p then q
~q
therefore ~p
modus tollens
[p v (q v r)] = [(p v q) v r]
association
[p * (q v r)] = [(p * q) v (p * r)]
distribution
p v q
~p
therefore q
disjunctive syllogism
p = ~~p
double negation
p
q
therefore p * q
conjunction
(if p then q) = (if ~p then ~q)
transposition
(if p then q) = (~p v q)
material implication
if p then q
if q then r
therefore, if p then r
hypothetical syllogism
[(p*q) then r] = [if p then (if q then r)]
exportation
(if p then q) * (if r then s)
p v r
therefore, q v s
constructive dilemma
p = (p v p)
p = (p * p)
tautology
p * q
therefore, p
simplification
(p=q) = [(if p then q) * (if q then p)]
material equivalence
if p then q
therefore, if p then (p * q)
absorption
p
therefore, p v q
addition
(p=q) = [(p * q) v (~p * ~q)]
material equivalence