deg(P) = deg(Q)
Improper
ax + b
A / (ax + b)
(10x) / (x-3)(x+7)
A/(x-3) + B/(x+7)
12x3+18x
6x(2x2+3)
integral of: 1/(x-2) dx
ln(|x-2|) + C
deg(P) > deg(Q)
Improper
(ax + b)k
A/(ax+b) + B/(ax+b)2 + ... + #/(ax+b)k
(x-7)/(x2-5x+13)2
(Ax+B)/(x2-5x+13) + (Cx+D)/(x2-5x+13)2
x2-9
(x+3)(x-3)
how can we use PFD for improper functions?
perform polynomial long division to get a reminder plus a proper faction and then do PFD on the proper part
deg(P) < deg(Q)
Proper
ax2 + bx + c
(Ax + B) / (ax2 + bx + c)
(2x2-7) / x4
A/x + B/x2 + C/x3 + D/x4
x2+5x+6
(x+2)(x+3)
form 1/x2 in two different ways
A/x + B/x2 since x2 = (x+0)2 and (Ax+B)/x2
(ex2) / (-ex3)
Proper
(ax2 + bx + c)k
[(Ax + B) / (ax2 + bx + c)] + ... + [(#x + #) / (ax2 + bx + c)k]
1/[(ex2)(x-2)2]
1/e [A/x + B/x2 + C/(x-2) + D/(x-2)2]
4x4+2x2
2x2(2x2+1)
integral of: 1/(a2 + x2) dx
1/a * arctan(x/a) + C