1. f(x)= 6
f'(x)=0
1. ƒ (t) = (4t² − t) (t³ — 8t² + 12)
f'(t)=20t^4-132t^3+24t^2+96t-12
1. T (z) = 2 cos(z) + 6cos-¹ (z)
T′(z)=−2sin(z)− 6/√1−z2
6. h (u) = tan(4+10u)
h′(u)=10sec2(4+10u)
5. f(x)=2x3-9x2-60x
x=−2,x=5
Increasing : (−∞,−2)&(5,∞)Decreasing : (−2,5)
x=−2: Relative Maximumx=5: Relative Minimum
2. V(t)=3-14t
v'(t)=-14
2. y=(1+ √x³) (x^-3 − 2 ³√x)
y=1-2x^3³√x+√x-2x^3 6√x11/(x^3)
2. g (t) = csc-1 (t) - 4cot-1 (t)
g′(t)=−1/|t|√t2−1 + 4/t^2+1
6. ex – sin(y) = x
y′=(1−e^x)/−cos(y)=
(e^x−1)sec(y)
6. h(t)=50+40t3 - 5t4-4t5
take 1st derivative
t=−3,t=0,t=2
Increasing : (−3,0)&(0,2)Decreasing : (−∞,−3)&(2,∞)
t=−3: Relative Minimum
t=0:Neither
t=2: Relative Maximum
3. g(x)= x^2
g'(x)=2x
4. g(x)= 6x2/2-x
g'(x)=24x-6x^2/(2-x)^2
3. y = sqrt 3(1-8z)
−8/3(1−8z)^-2/3
7. 4x²y7 — 2x = x5 + 4y³
y′=(8xy^7−5x^4−2) / (12y^2−28x^2y^6)
7. y=2x³- 10x²+12x-12
Increasing : (−∞,5−√7/3)&(5+√7/3,∞)Decreasing : (5−√7/3,5+√7/3)
x=5−√7/3=0.78475: Relative Maximumx=5+√7/3=2.54858: Relative Minimum
4. Q(t)=10+5t-t^2
Q'(t)=5-2t
5. R(w)= 3w+w^4/ 2w2+1
4w^5+4w^3-6w^2+3/ (2w^2+1)^2
4. R(w) = csc(7w)
R′(w)=−7csc(7w)cot(7w)
f(x)=(5−3x^2)^7√6x^2+8x−12
=7ln(5−3x^2)+12ln(6x2+8x−12)
5. W(z)=4z^2-9z
W'(z)=8z-9
5. G (x) = 2 sin(3x + tan(x))
G′(x)=2(3+sec2(x))cos(3x+tan(x))
2.y=sin(3z+z2)/(6−z4)3
sin(3z+z2)/(6−z4)^3[(3+2z)cot(3z+z2)+ (12z^3/6−z^4)]