csc(3π/2)
-1
Find y'
2y3+4x2-y=x6
y'=(6x5-8x)/(6y2-1)
Log3/8(27/512)=
3
expand
Log7(10a7b3c-8)
Log7(10)+7Log7(a)+3Log7(b)-8Log7(c)
f(x)=9Log4(x)+12Log11(x)
What f'(x)
f'(x)=9/(x*Ln(4)) +12/(x*Ln(11))
Limx->∞ (11+8x)/(x3+7x)
0
Find y'
7y2+sin(3x)=12-y4
y'=(-3cos(3x))/(14y+4y3)
How has f(x) shifted from the parent function y=2x
f(x)=31+x
left 1 unit
vertical stretch by factor of 3/2
expand
Log[z2(x2+4)3]
2Log(z)+3Log(x2+4)
h(t)=6t-4et
What is h'(t)
h'(t)=6tLn(t) - 4et
h(t)=t3-t2cos(t)
h'(t)=3t2-2tcos(t)+t2sin(t)
Find y'
4x2y7-2x=x5+4y3
y'=(-8xy7+5x4+2)/(28x2y6-12y2)
How has h(x) shifted from the parent function y=2x
h(x)=23-x-7
left 3 units
rotate about the y-axis
vertical shift down 7 units
expand
Ln[(w2t3/4)/(t+w)1/2]
2Ln(w)+(3/4)Ln(t)-(1/2)Ln(t+w)
R(t)=(t2-6t+3)*et
What is R'(t)
R'(t)=(2t-6)et + (t2-6t+3)et
f(x)=((2x)/(x2+1))3
What is f'(x)
f'(x)=3((2x)/(x2+1))2*((-2x2+2)/(x2+1)2)
Find y'
ex-sin(y)=x
y'=(1-ex)/(-cos(y))
How has h(t) shifted from the parent function y=et
h(t)=8+3et-4
vertical shift 8 units up
vertical stretch by a factor of 3
horizontal shift 4 units right
combine into one logarithm
7Ln(t)-6Ln(s)+5Ln(w)
Ln(t7s-6w5)
Daily Double (Max bet: 1000)
Find the derivatives of the four functions
1) f(x)=ax
2) g(x)=Loga(x)
3) h(x)=Ln(x)
4)s(x)=ex
f(w)=tan(w)sec(w)
What is f'(x)
f'(w)=sec3(w)+tan2(w)sec(w)
Daily Double
Find y'
cos(x2+2y)+xey^2=1
y'=(2xsin(x2+2y)-ey^2)/(-2sin(x2+2y)+2yxey^2)
How has g(z) shifted from the parent function y=ez
g(z)=10-(1/4)e-2-z
vertical shift up 10 units
vertically shrink by factor of 4
rotate about the x-axis
rotate about the y-axis
horizontal shift 2 units right
combine into one logarithm
2Log3(x+y)+6Log3(x)-(1/3)
Log3[(x+y)2x6*3-1/3]
g(r)=[r2+Log7(r)]/[7r]
what is g'(r)
g'(r)=[7r(2r+(rLn(7))-1-(7rln(7))(r2+Log7(r))]/[72r]