Functions
Limits
Word Problems
Derivatives
100

Find the domain of the function. f(x)= 4(x-1)-1/2

Domain: (-infinity,1) U (1,infinity) 

100

Lim x-->2 (x2-4)/x-2

4

100

A manufacturer has a monthly fixed cost of $20,000 and a production cost of $10 for each unit produced. The product sells for 415/unit. Let x represent the number of units produced. What is the cost function? 

C(x)= 10x+ 20,000

100

Find f'(x). f(x)= (3x2=7)(4x3+1)

(6x)(4x3+1)+(12x2)(3x2-7)

200

What are the domain and range of the function? f(x)= 7-(9-2x)1/2

domain= (-infinity, 9/2] 

range= (-infinity, 7] 

200

Lim x--> infinity (24x4+13x3-1,020)/(8x5-40x4+30x3+10,450)

0

200

Find the slope of the tangent line to f(x). f(x)= pie/2x2 when x= pie. 

1/pie2

200

Find f'(x). f(x)= (x)1/3 + (1/(x)3/4)

(1/3(x)2/3) - (3/4(x)7/4)

300

Let f(x)= 2x2-x. Find f(x+h)-f(x). 

4xh+2h2-h

300

Lim x--> -1 (1)/(x+1)

DNE b/c LHL does not equal RHL 

300

TuffStuff Inc. manufacturers steel backpacks. The weekly cost for producing x backpacks is given by the C(x)= 8000 + 100x. 

Find the marginal cost function. 

C'(x)= 100 

300

Find f'(x). f(x)= 2/(x2-1)4

-16/(x2-1)5

400

Determine h(2). Where h= g(f(x)). f(x)= x+1 g(x)= 2(x2-1)

16

400

Lim x--> 3 (x(x2+7)1/2)/(2x-(2x+3)1/2)

4
400
Find the equation of the tangent line when x=2. f(x)= x2/ x+2 

y= 3/4x -1/2

400

Find f'(x). f(x)= (1-x3)1/3

-x2/ (1-x3)2/3

500

What is a function? 

a function must have 1 singular output for every output

or

cannot have two of the same y-values

500
Let f(x)= 


(x2-4)/ x+2 x cannnot = -2 

k x= -2

Find the value of k that will make the function continuous. 

-4

500

Find f'(x) using the limit definition of a derivative. f(x)= -4/x2

8/x3

500

Find f''(x). f(x)= (x2+1)1/2

1/(x2+1)1/2 - x2/ (x2+1)3/2