Vocab
Transformation of Quadratic Functions
Graphing Quadratic Functions in Vertex Form
Graphing Quadratic Functions in Standard Form
100

Define Coefficient 

A number that multiplied by a single variable. 

100

Find the vertex of f(x)= 2(x - 2)2 +4 

Vertex: (2,4) 

100

Find the vertex of f(x)=2(x-5)+2 

vertex: (5,2)

100

Find the y-intercept of p(x)=x2 +4x +10

Y-intercept = (0,10) 

200

Define Binomial 

An expression with two terms. 

200

Find the y-intercept of the standard form p(x) = x2 +4x +8

Y-intercept: (0,8) 

200

Find the line of symmetry of f(x)=2(x-5)+2

Line of Symmetry: x = 5 

200

Is the function compressed or stretched for p(x)=x2 +4x +10

a=1, so no stretch or compression 

300

Define Polynomial 

An expression with more than 3 terms. 

300

Find the vertex of the standard form function: p(x)=2x+4x +12 

Vertex: (-1, 10)

300

Find the y-intercept of f(x)=2(x-5)+2

Y-intercept = (0,52) 

300

Find the vertex of p(x)=x2 +4x +10

Vertex: (-2,-6)

400

Define Square Root 

 A number that is multiplied by itself. 

400

Find the x-intercepts of f(x)= (x-6)2 -2

x-intercepts: (0,8) & (0,4)

400

Convert this vertex function into a standard form f(x)=2(x-5)+2

Standard form: f(x)= 2x-20x +52 

400

Find the line of symmetry of p(x)=x2 +4x +10

x=2

500

Define Y-intercept

When a function crosses Y

500

Find g(x), where g(x) is the translation 6 units left and 2 units up. Write the answer in the form a(x-h)+ k. 

Form: g(x)=a(x-6)+2

500

Find the x-intercepts of f(x)=2(x-5)+2

Impossible 

500

Find the x-intercepts of p(x)=x2 +4x +10

Impossible. No x-intercepts