Terminologies
Gaussian, LU, Minor, Cofactor and Adjoint

Inverse and Determinants
Applications
Vector Spaces
100

uses determinants to solve a system of n linear equations in n variables

Cramer's Rule

100

Find the solution set of the system of linear equations represented by augmented matrix.

[ 1   -1    0    3]

[0     1   -2    1]

[0     0    1   -1]

 


SS: {2, -1, -1}

100

Compute A-2 where 

A = [2   7]

      [-5  6]

[1/2209      -56/2209]

[40/2209    -31/2209]

100

Given the following system of linear equations,

8x + 7y = -10

-4x - 2y = 8

Using the Cramer's rule, what is the value of Dy?

Dy = 24

100

Find the cross product of u and v where

u = 2i +9j - 3k and v = -4i + i -5k

-42i +22j +38k

200

It describes the entire solution set of a linear equation.

Parametric representation

200

Find AB where

A = [ 0   -1    0]     and B = [ 2     4]

      [ 4    0    2]                  [-3     2]

       [8    -1    7]                  [ 1    -5]    

AB = [3      -2]

        [10      6]

        [26     -5]

200

Let A be a 3x3 matrix with det(A) = 2 and B = 3A. What is the det(B)?

det(B) = det(3A)

= (33)*det(A) = 27*2

det (B) = 54

200

Determine whether these points A(5, -2), B(4, -1) and C(1, 2) are collinear.

Yes, these points are collinear.

200

Find the dot product of u and v where 

u = (1, 1/8, 2/5) and v = (0, 1/4, 1/5)

89/800

300

A square matrix that is obtained from the identity matrix by a single elementary row operation.

elementary matrix

300

Given the matrix,

[ -6  -2  -1 ]

[  5   1  -6 ] 

[ -4  -6  -6 ]

what is the cofactor of 5? 


-6

300

Solve for the determinant:

[ 2    -4     6 ]

[ -4    6    -8 ] 

[ 6    -8    10 ]

Is it singular or non-singular?

determinant = 0

(singular matrix)

300
Find the area of parallelogram with vertices (1,1), (-4,5), (-2,8) and (3,4)

Area = 23 square units

300

Find the angle between vectors u =(0,1,0,1) and v = (3,3,3,3)

45 degrees of pi/4

400

A determinant of the matrix obtained by deleting the ith row and jth column of the given matrix. 

Minor of the element aij

400

What is the LU factorization of the following matrix?

[ 2  3 ]

[ 4  9 ]

[ 1  0 ] [ 2  3 ]

[ 2  1 ] [ 0  3 ]

400

Use expansion by cofactors to find the determinant of the matrix

[x      y       1]

[-2    -2     1]

[1       5     1]

-7x+3y-8

400

Given the matrix, find its inverse using adjoint.

[1     2    3]

[0     1   -1]

[2     2     2]

[-2/3     -1/3        5/6]

[1/3        2/3      -1/6]

[1/3       -1/3      -1/6]

400

Find the eigenvalues and eigenvectors of 

A = [2    -12]

      [1      -5]

eigenvalues are -1 and -2

eigenvectors:

[4]   and [3]

[1]         [1]

500
A matrix that is obtained by transposing the cofactors of the given matrix.

Adjoint

500

What is the adjoint of the following matrix?

[ 2  -1  3 ]

[ 0   5  2 ]

[ 1  -1 -2 ]

[ -8   -5   -17 ]

[ 2    -7    -4 ]

[ -5    1    10]

500

Find |AB| where

A = [-1    2     1]    and     B = [-1    0    0]

      [1     0     1]                     [0     2    0]

      [0     1     0]                     [0     0    3]

-12
500

Find the volume of tetrahedron with the vertices (0, 0, 0), (0, 2, 0), (3, 0, 0) and (1, 1, 4)

4 cubic units

500

Write v as a linear combination of x, y and z where

v = (x, y, z), x = (1, 0 ,-2), y = (0, 1, 1) and 

z = (-1, -1, 2)

SS = {3x-y+z, 2x+z, 2x-y+z}