Easy
Medium
Hard
Conceptual Qs
Double Jeopardy
100

If y=cos2x, then dy/dx=

(A) -2sin2x       (B) -sin2x

(C) sin2x          (D) 2sin2x          (E) 2sinx

(A) -2sin2x

100

lim x->∞  

sqrt(9x^4+1)/(4x^2+3)

 is

(A) 1/3      (B) 3/4      (C) 3/2       (D) 3/2       (E) DNE

(B) 3/4

100

If y=(x/(x+1))^5 then dy/dx=

(A) 5(1+x)^4


(B) (5x^4)/(x+1)^4

(C) (5x^4)/(x+1)^6

(D)(5x^4(2x+1))/(x+1)^6

(C) 5x^4/(x+1)^6

100

If y=f(x) is a solution to the differential equation below with initial condition f(0)=2, which of the following is 2?

dy/dx=e^(x^2)  

(A) 1+e^(x^2)

(B) 2xe^(x^2)

(C) int_0^x e^(t^2)dt

(D) 2+int_0^x e^(t^2)dt

(E) 2+int_2^x e^(t^2)dt

(D) 2+int_0^x e^(t^2)dt

100

A slope field for a differential equation is shown in the figure above. If y=f(x) is the particular solution to the differential equation through the point (-1,2) and h(x)=3x∗f(x), then h'(-1)=

12

200

The slope of the line tangent to the graph of y=ln(1-x) at x=-1 is

(A) -1     (B) -1/2     (C) 1/2     (D) ln2     (E) 1

(B) -1/2  

200

If 0<c<1, what is the area of the region enclosed by the graphs of y=0, y=1/x, x=c, and x=1?

(A) ln(1-c)      (B) ln(1/c)      (C) ln(c)   

(D) 1/c2 - 1      (E) 1 - 1/c2

(B) ln(1/c)

200

int_0^4x/sqrt(x^2+9)dx= 

(A)-2   

(B) -2/15   

(C) 1   

(D) 2

(D) 2

200

The table above gives selected values for a twice-differentiable function f. Which of the following must be true?

(A) f has no critical points in the interval -1<x<5

(B) f'(x)=8 for some value in the interval -1<x<5

(C) f'(x)>0 for all values in the interval -1<x<5

(D) f''(x)<0 for all values in the interval -1<x<5


(B) f'(x)=8 for some value in the interval -1<x<5   (MVT)

300

int(e^x+e)dx=

 (A) e^x+C   

(B) 2e^x+C   

(C) e^x+e+C   

(D) e^(x+1)+ex+C   

(E) e^x+ex+C

(E) e^x+ex+C

300

Let be the function defined by the integral below. Which of the following is an equation for the line tangent to the graph of h at the point where x=π/4 ?

h(x)=int_(pi/4)^x(sin^2t)dt

(A) y=1/2 

(B) sqrt(2)

(C) y=x-pi/4

(D) y=1/2(x-pi/4)

(E) y=sqrt(2)/2(x-pi/4)

(D) y=1/2(x-pi/4)

300

Sand is deposited into a pile with a circular base. The volume V of the pile is given by V=r3/3 , where r is the radius of the base in feet. The circumference of the base is increasing at a constant rate of 5pi feet per hour. When the circumference of the base is 8pi feet, what is the rate of change of the volume of the pile?

(A) 8/pi     (B) 16     (C) 40     (D) 40pi     (E) 80pi

(C) 40

300

Let f be a function that is continuous on the closed interval [1,3] with f(1)=10 and f(3)=18. Which of the following statements must be true? 

(A) 10<f(2)<18

(B) f is increasing on the interval [1,3]

(C) f(x)=17 has at least one solution in the interval [1,3]

(D) f'(x)=8 has at least one solution in the interval (1,3)

(C) f(x)=17 has at least one solution in the interval [1,3]   (IVT)