Chain Rule
Inverse Derivatives
Higher Order Derivatives
Implicit Differentiation
Tangent Lines
100

Find f’(x) when f(x) = (2x - 7)3

f’(x) = 6(2x - 7)2

100

g satisfies g(4)=6 and g'(4)=-2. What is the value of (g-1)'(6)?

-1/2

100

Find y" if y=2x4-5x2+3

y"=24x2-10

100

Find dy/dx if y2 - x2 = 6

dy/dx = x/y

100

Write the equation of the tangent line for f(x) = x2+1 at (5, 26)

y - 26 = 10(x - 5)

200

Find dy/dx if y=2(-7x-2)-3

Write your answer with no negative exponents

 

dy/dx=42/(-7x-2)^4

200

f satisfies f(10)=5 and f'(10)=8. What is the value of (f-1)'(5)?

1/8

200

Find f’’’(x) if f(x) = 23x4

f’’’(x) = 552x

200

Find dy/dx if 2y3 + 4x2 - y = x6

dy/dx = (6x5 - 8x)/(6y2 - 1)

200

Write the equation of the tangent line for f(x) = 3x2 + 5 at x = 2

y - 17 = 12(x - 2)

300

Find f’(x) when

f(x) = 3sqrt(sinx)

Write your answer with no negative exponents

 

f'(x) = (3cosx)/(2sqrt(sinx))

300

The function f is defined by f(x)=-x3-4x+5 and the point (-1, 10) is on the graph of f. If g is the inverse function of f, what is the value of g'(10)?

-1/7

300

Find f’’’’(x) if f(x) = -sinx

f’’’’(x) = -sinx

300

Find y' if 2x2+3xy2+4y3=2

y'=(-4x-3y^2)/(6xy+12y^2)

300

Write the equation of the tangent line to y = sin(2x) at x = 5π/6

y + √3/2 = (x - 5π/6)

400

Find f’(x) when f(x) = log3(2x + 9)

 

f'(x) = 2/((2x+9)ln3)

400

The function f is defined by f(x)=2x3+4x+2 and f(−1)=−4. If g is the inverse function of f, what is the value of g′(−4)?

1/10

400

Find d2y/dx2 if f(x) = cos(2x2) - 26x3

d2y/dx2 = -4sin(2x2) - 16x2cos(2x2) - 156x

400

Find dy/dx if cos(y3) = x+ 2x + 5

dy/dx = (3x2 + 2)/(-3y2sin(y3))

400

Write the equation of the tangent line to y = sin2(x) at x = π/4

y - 1/2 = (x - π/4)

500

Find dy/dx when y=2sin4(4+x2)

dy/dx=16xsin3(4+x2)cos(4+x2)

500

Let f and g be inverse functions that are differentiable for all x. If f(-5)=7 and g'(7)=3, what is f'(-5)?

1/3

500

Find f’’’(x) if f(x) = -cos(3x) + sin(x2)

f’’’(x) = -27sin(3x) -12xsin(x2) - 8x3cos(x2)

500

Find dy/dx if 4y4 = 6cos(x3) - sin(y2)

dy/dx = (-9x2sin(x3))/(8y3 + ycos(y2))

500

Write the equation of the tangent line to x4 + y= 3 at (1, -√2)

y + √2 = 2/√2 (x - 1)