Describing Data
Graphs
Descriptive Stats
Location in a Distribution
Correlation
100

The value of a quantitative variable that appears most often in the data.

The mode!

100

A bar graph should only be used for this kind of data.

Categorical

100

The mean of this data:

2, 5, 10, 12, 17, 20

11

100

The value with p% of the observations less than it.

Pth percentile

100

This kind of variable measures the outcome of a study or experiment.

Response Variable

200

A distribution with two clear peaks is called this.

Bimodal

200

In this graph, each observation is shown as a dot above its value.

Dotplot

200

A statistic that is not influenced by extreme observations.

Resistant Measure

200

150 is an observation from a N(50,25) distribution.

This is the z-score.

4

200

We discuss these four characteristics when describing the pattern of a scatter plot.

DOFS!

Direction, outliers, form, and strength.

300

In a distribution with this shape, the mean is always less than the median.

Left-skewed

300

This is why you might want to split the stems on a stemplot.

Too many observations on too few stems.
300

The IQR of this data:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

5

300

A distribution is bimodal and left-skewed. Its mean is 35 and its standard deviation is 9. We subtract 35 from each observation and divide by 9.

This is the new distribution's shape.

Bimodal and left-skewed.
300

This kind of variable cannot be analyzed using correlation.

Categorical

400

These are the four components should we discuss when describing the overall pattern of a distribution. 

SOCS!

Shape, outliers, center, and spread.

400

When quantitative variables take on many different values, we should use this kind of graph.

Histogram

400

Find the standard deviation of this data:

7, 7, 9, 9

1

400

The distribution of adult men measured in inches is approximately N(69,2.5).

This is the percent of men taller than 74 inches.

2.5%

400

This kind of variable is always plotted on the horizontal axis.

Explanatory

500

A distribution with many more observations to the right side of the mode than the left.

Right-skewed

500

If you want to compare two distributions with a stemplot, you might make this kind of graph.

Back-to-back stemplot

500

You can only use integers from 0 to 10. Repeats are allowed.

Choose 4 numbers that have the largest possible standard deviation.

0, 0, 10, 10

500

The distribution of adult men measured in inches is approximately N(69,2.5).

This is the percent of men between 64 and 66.5 inches tall.

13.5%

500

A correlation of exactly -1 means this.

All observations are on a negatively-sloped line.