Solve for x
Transformations and Equivalent
Quadratics
Complex Numbers
Polynomials
100

 2sqrt(x)+5=-1 

2sqrtx=-6

sqrtx=-3

sqrt(x)^2=(-3)^2

x=9

100

What 4 transformations occurred in the function

y = -3(x - 2)2 + 4

- translated 2 units to the right 

- translated 4 units up

- reflected over the x-axis (upside down)

- Parabola got narrow ( 3 > 1 )

100

convert to standard form: y = (x + 1)2 - 2

y = (x + 1)( x + 1) - 2

y =  (x2 + 2x + 1) - 2

y = x2 + 2x - 1

100

(3 + 2i) - (3 - i)

0 + 3i

100

f(x) = x3 + x2           g(x) = x2 - 3

f(2) + g(2)

(x3 + x2) + (x2 - 3)

x3 + 2x2 - 3

(2)3 + 2(2)2 - 3

= 13

200

(x-5)^2=9

sqrt((x-5)^2)=sqrt9

x - 5 = 3 or -3

x = 8 or 2

200

write a quadratic equation for the transformations

5 unit up and 3 units left

y = (x + 3)2 + 5

200

Find the Vertex y = 3x2 + 12x + 5

 AOS = (-12)/(2(3))=-2 

 f(AOS) = 3(-2)^2+12(-2)+5 

Vertex = ( -2, -7)

200

(3 + 2i) (5 - 3i)

15 - 9i + 10i - 6i2

15 + 1i - 6(-1)

15 + i + 6

21 + i

200

f(x) = x3 + x2               g(x) = x2 - 3

f(x) - g(x) 

(x3 + x2) - (x2 - 3)

x3 + 0x2 + 3

= x3 + 3

300

3x + 4 = 2x - 5

- 2x       - 2x

 x + 4 =  - 5

     - 4      - 4 

       x = - 9

300

Which is equivalent to y= (x + 2)2 - 2

a.  y = x

b. y = x + 2

c. y = x2 + 2

d.  y = x2 + 4x + 2


d. y = x2 + 4x + 2

300

Find the solutions of y = x2 + 2x + 1

 x=(-2+-sqrt((2)^2-4(1)(1)))/(2(1)) 

x = (-2+0)/2

x = -1

300

(4 + 5i)2

(4 + 5i)(4 + 5i)

16 + 20i + 20i + 25i2

16 + 40i + 25(-1)

16 + 40i - 25

-9 + 40i

300

f(x) = 4x2 + 2x - 5

Find f(-2)

f(-2) = 4(-2)2 + 2(-2) - 5

f(-2) = 7

400

find the solution for the equations

y =  4x - 5 and y = -x + 5

4x - 5 = -x + 5

+x         +x 

5x - 5 = 5

5x = 10

x = 2

400

Which is equivalent to y = x2 + 3x + 2

a. y = (x + 1)(x + 2)

b. y = (x2 + 3)(x + 2)

c. y = x + (3x + 2)

d. y = (x + 2)2 + 1

a. y = (x + 1)(x + 2)
400

Find the solutions of y = x2 - 2x - 8

 x=(-2+-sqrt((-2)^2-4(1)(-8)))/(2(1)) 

 x=(2+-6)/2 

x= -2 or 4

400

(2x + 3i)2

(2x + 3i)(2x + 3i)

4x2 + 6xi + 6xi + 9i2

4x2 + 12xi + 9(-1)

4x2 + 12xi - 9

400

f(x) = 3x3 + 9x2 + 6x   and    g(x) =  3x2 + 3x

f(x)/g(x)


3x3 +9x2 +6x = 3(x2+3x+2) = 3(x+2)(x+1)

f(x)/g(x)=(3(x+1)(x+2))/(3(x+1)

 = (x + 1)

500

f(x) = (x + 2)(x - 2) and f(x) = 21

(x + 2) (x - 2) = 21

x2 + 2x - 2x - 4 = 21

x2 - 4 = 21

x2 = 25

x = 5 or -5

500

y = (2x^2+20x+48)/(2x+12)

a. y=(x^2+2x+4)

b. y=x+(20x+4)

c. y=x+4

d. y=x+6

c. y = x + 4

500

Find the solutions for y = -2x2 + 2x + 4

 x = (-2+-sqrt((2)^2-4(-2)(4)))/(2(-2)) 

 x=(-2+-6)/(-4)

 x=-1 or 2 

500

(2 - 3i) + (x + 2i)2

(2 - 3i) + (x + 2i)(x + 2i)

(2 - 3i) + (x2 + 4xi + 4i2)

(2 - 3i) + (x2 + 4xi + 4(-1))

(2 - 3i) + (x2 + 4xi - 4)

x2 + 4xi - 3i -2

500

f(x) = x4 - 4x2  and  g(x) = x4 + 14x3 + 24x2

f(x) divide g(x)

f(x)/g(x)=(x^2(x-2)(x+2))/(x^2(x+2)(x+12))

f(x)/g(x)=(x-2)/(x+12)