Triangle Congruence
Rotations
Classifications
Distance/Slope
100

Classify: Triangle with at least 2 equal sides. 

Isosceles Triangle 

100

Original points: A (1,2) B(4,2) C (8,1)

Prime points: X(-1,-2) Y(-4,-2) Z (-8,-1)

Describe the type of transformation taking place. 

Rotation 180 degrees

100

Y (8,2)

Z(5,3)

Find the distance of YZ

3.16

100

A ( 0,2) B (6,1)

Find the slope 

-1/6

200


Triangle; Given: A (90 degrees) B (4x+2) C (2x+6)


Find the value of angle B,C 

B (approximately 57) C (approximately 33)

200

Rotate points A (3,4) B (2,-5) C (9,2) 270 degrees clockwise 

B (4,-3) C (-5,-2) D (2,-9)

200

Consider triangle ABC an isosceles triangle 

side: A- 20yd side B- 2x+9 side3 (bottom): 25yds 

Find the value of x 

x= 11/2 or 5.5 

200

A (4,5) B (7,8) C(2,1) D (0,8)

Find the slope of AD

-3/4 

300

angle A: 48 degrees , angle B:right, angle C: x+2

Find the value of x

40/3 or 13.33

300

rotate points A(0,6) B (8,5) C (2,15) 90 degrees clockwise 

X (6,0) Y (5,-8) Z (15,-2)

300

Consider an equilateral triangle 

side A: 18 ft, side B:  , side C:

Find the value of side B and side C

18 ft ,18 ft

300

G (7,4) H (2,5) I (1,4) J (8,1)

Find GH 

square root of 26

400

angle A: 16 , angle B: y ,  angle C: blank 

angle X: blank,  angle Y: 58 , angle Z: right angle 

If triangle ABC and XYZ are identical, congruent triangles. What is the value of y?

58 degrees 

400

rotate points B (8,2 ) C (6,3) D (2,-2) 180 degrees 

X (-8,-2) Y (-6,-3) Z (-2,2)

400

Consider a right triangle 

angle A: 36, angle B:    , angle C: x

Find the value of angle B; Find the value of x

90; 54 degrees 

400

A (6,2) B (1,3) C (4,5) D (0,6)

Find BC 

square root of 13

500

Name the 3 classifications of a triangle AND how to identify them 

scalene: no sides equal , isosceles: at least 2 sides equal, equilateral : all sides equal 

500

rotate A (5,2) B (1,4) C (9,0) 90 degrees counterclockwise

X (-2,5) Y (-4,1) Z (0,9)

500

Consider an equilateral triangle ABC

angle A: 60 , angle B:blank, angle C: 4x+12

Find the value of x 

x= 12

500

X (7,2) Y (5,8) Z (1,6) 

Write out the Pythagorean theorem; find the distance: XY 

square root: (x2   - x1)+ (y2- y1) ; square root of 40