Algebraic
Segments
Angles
Parallel/Perpendicular Lines
100

If a = b, then a + c = b + c

Addition Property of Equality

100

if vec(AB) cong vec(CD)

then AB = CD

Definition of Congruent

100

If ∠ABC is a right angle, then m∠ABC = 90o

Definition of right angle

100

If  bar(AB) bot bar (BC) , then m∠ABC = 90o

Definition of Perpendicular

200

If a(b + c) = d, then ab + ac = d

Distributive Property

200

if B is the midpoint of  bar(AC) then AB = BC

Definition of Midpoint

200

If mangleC=mangleB, then, angleCcongangleB 

Definition of Congruent

200

If l || m, then ∠2 and ∠3 are supplementary

Consecutive Interior Angle Theorem

300

If a = b, then b = a

Symmetric Property

300

If A is between C and F, then CA + AF = CF

Segment Addition Postulate

300

If  vec(LM) bisects ∠AMC, then ∠AML ≅ ∠LMC

Definition of Angle Bisector

300

If ∠1 ≅ ∠5, then l || m

Converse of Alternate Exterior Angles Theorem

400
If a + b = c, and b = d, then a + d = c

Substitution Property

400

If AB + BC = AC and AD + DC = AC, 

then AB + BC = AD + DC

Transitive Property

400

If C is in the interior of ∠XYZ, then 

m∠XYC + m∠CYZ = m∠XYZ

Angle Addition Postulate

400

If point B is on the perpendicular bisector of  bar(CD) then BC = BD

Perpendicular Bisector Theorem

500

If a * b = c * b, then a = c

Division Property of Equality
500

If 2(AB) = AB + EF, then AB = EF

Subtraction Property of Equality

500

If ∠A is supplementary to ∠B and ∠C is supplementary to ∠A, then ∠B ≅ ∠C

Congruent Supplements Theorem

500

If o⊥m and o⊥n, then m||n

Converse of Perpendicular Transversal Theorem