Write the polynomial in standard form: 3 - 4x3 + 2x2
- 4x3 + 2x2 + 3
Describe the end behavior of the function: y = x2
x -> - inf : y -> + inf
x -> + inf : y -> + inf
Write out the difference of squares identity.
a2-b2=(a+b)(a-b)
Write the polynomial in standard form and identify the LC and Degree: x2-2x+3x4+x-4+x4
Standard Form: 3x4+x2-x-4
LC: 4
Degree:4
Find the remainder:(2x3 + 4x2 - 3x + 2) ÷ (x - 1)
5
Identify the number of terms and degree: x3 + 2
# of terms: 2
Degree: 3
Describe the end behavior of the function: y = -x3
x -> - inf : y -> + inf
x -> + inf : y -> - inf
Write out the square of a sum identity.
(a+b)2=a2+2ab+b2
Which identity is this:
(a+b)2=a2+2ab+b2
Square of a Sum identity
Identify the leading coefficient and degree: - 3x + 12+ 5x2
LC: 5
Degree: 2
Describe the end behavior of the function: y = -3x2 + 4x + 1
x -> - inf : y -> - inf
x -> + inf : y -> - inf
Write out the difference of cubes identity.
(a-b)(a2+ab+b2)
Expand using Binomial Theorem and Pascal's Triangle:
(s+4)3
s3+12s2+48s+64
Identify the degree and number of terms : 3x+4+2x-6 -2x4
Degree: 4
# of terms:3
Describe the end behavior of the function: y = 7x3 + 2x2 - 10x + 9
x -> - inf : y -> - inf
x -> + inf : y -> + inf
Write out the sum of cubes idenity.
(a+b)(a2-ab+b2)
Expand using Binomial Theorem and Pascal's Triangle:
(s+2x2)3
s3+6s2x2+125sx4+8x6
Find the quotient and remainder: (x3 + 3x2 - x + 2) ÷ (x - 1)
Quotient: x2 + 4x + 3, remainder: 5
Identify the degree and number of term: 3x3 + 8 - x3 - 7x2
Degree:3
# of terms:3
Describe the end behavior of the function and find the y-intercept: y = 7x - 5x2 + 8x
x -> - inf : y -> - inf
x -> + inf : y -> - inf
Factor the following expression using polynomial identities: 36x6-9s8
(6x3+3s4)(6x3-3s4)
Expand using Binomial Theorem and Pascal's Triangle:
(2s+4x2)4
16s4+128s3x2+384s2x4+512sx6256x8