Classify Polynomials
End Behavior
Polynomial Identities
Random
Dividing Polynomials
100

Write the polynomial in standard form: 3 - 4x3 + 2x2

- 4x3 + 2x2 + 3

100

Describe the end behavior of the function: y = x2

x -> - inf : y -> + inf  

x -> + inf : y -> + inf


100

Write out the difference of squares identity.

a2-b2=(a+b)(a-b)

100

Write the polynomial in standard form and identify the LC and Degree: x2-2x+3x4+x-4+x4

Standard Form: 3x4+x2-x-4

LC: 4

Degree:4

100

Find the remainder:(2x3 + 4x2 - 3x + 2) ÷ (x - 1)

5

200

Identify the number of terms and degree: x3 + 2

# of terms: 2

Degree: 3

200

Describe the end behavior of the function: y = -x3

x -> - inf : y -> + inf  

x -> + inf : y -> - inf

200

Write out the square of a sum identity.

(a+b)2=a2+2ab+b2

200

Which identity is this:

(a+b)2=a2+2ab+b2

Square of a Sum identity

200
Find the quotient: (x2 + 10x + 21) ÷ (x + 3)
x + 7
300

Identify the leading coefficient and degree: - 3x + 12+ 5x2

LC: 5

Degree: 2

300

Describe the end behavior of the function: y = -3x2 + 4x + 1

x -> - inf : y -> - inf  

x -> + inf : y -> - inf

300

Write out the difference of cubes identity.

(a-b)(a2+ab+b2)

300

Expand using Binomial Theorem and Pascal's Triangle:

(s+4)3

s3+12s2+48s+64

300
Find the quotient and remainder: (2x2 + 7x + 8) ÷ (x + 2)
Quotient: 2x + 3, remainder: 2
400

Identify the degree and number of terms : 3x+4+2x-6 -2x4

Degree: 4

# of terms:3

400

Describe the end behavior of the function: y = 7x3 + 2x2 - 10x + 9

x -> - inf : y -> - inf  

x -> + inf : y -> + inf

400

Write out the sum of cubes idenity.

(a+b)(a2-ab+b2)

400

Expand using Binomial Theorem and Pascal's Triangle:

(s+2x2)3

s3+6s2x2+125sx4+8x6

400

Find the quotient and remainder: (x3 + 3x2 - x + 2) ÷ (x - 1)

Quotient: x2 + 4x + 3, remainder: 5

500

Identify the degree and number of term: 3x3 + 8 - x3 - 7x2

Degree:3

# of terms:3

500

Describe the end behavior of the function and find the y-intercept: y = 7x - 5x2 + 8x

x -> - inf : y -> - inf  

x -> + inf : y -> - inf

500

Factor the following expression using polynomial identities: 36x6-9s8

(6x3+3s4)(6x3-3s4)

500

Expand using Binomial Theorem and Pascal's Triangle:

(2s+4x2)4

16s4+128s3x2+384s2x4+512sx6256x8

500
Find the quotient and remainder: (x3 + 11x + 12) ÷ (x + 3)
Quotient: x2 - 3x + 20, remainder: -48