Degree of Polynomials
Adding or Subtracting Polynomials
Special Cases
Multiplying Binomials
Distributive Principle
100
4y + 7
What is a first degree polynomial
100
(3x+5) + (4x+1)
7x + 6
100

(x-8)^2

x^2-16x+64

100
(x+2)(x+3)
x2 + 3x + 2x + 6 x2+5x+6
100
4(3x + 4)
12x + 16
200
3x
What is a first degree polynomial
200
(6x-7) + (4x+5)
10x-2
200

(2x-4)(2x+4)

4x^2-16

200
(x-7)(x+2)
x2 + 2x - 7x - 14 x2-5x-14
200
2(5x + 6)
10x + 12
300
4x2 + 5x + 6
What is a second degree polynomial
300
(5x-7) - (8x-2)
-3x - 5
300

(3x-5)^2 

9x^2-30x+25

300
(2x+4)(x-8)
2x2 - 16x + 4x - 32 2x2-12x-32
300
6(x+12)
6x+72
400
7
What is a zero degree polynomial
400
(5x-3) + (4x+7) + (2x-6)
11x-2
400

(2r+7s)^2

4r^2+28rs+49s^2

400
(x-4)2
(x-4)(x-4) x2 - 4x - 4x + 16 x2-8x+16
400
4(3x-y+5)
12x-4y+20
500
-15
What is a zero degree polynomial
500
(6x-8) - (6x+8)
-16
500

(-5x-4y)^2

25x^2+40xy+16y^2

500
DAILY DOUBLE (this one is HARD!) Use the 1)Addition Principle, 2)Factor and use the 3)Zero Product Rule to solve x2 - 10x + 5 = 29
1) x2 - 10x + 5 = 29 -29 -29 x2 - 10x - 24 = 0 2) (x - 12) (x + 2) = 0 3) x-12 = 0 OR x+2=0 x=12 x=-2
500
-3(2x-6)
-6x+18