Definitions and Degrees
Adding/Subtracting Polynomials
Variety Pack
Multiplying Polynomials
Dividing Polynomials
100

Classify the polynomial by the degree and number of terms:

2x3

Degree of 3, Monomial

100

Add the Polynomials

(4x + 9) +(x - 4)

5x + 5

100

This is the simplified expression of the perimeter of a square of side length (5x - 8)


20x - 32

100

Multiply the Polynomials:

3x2 (2x4)

6x6

100

Divide the Polynomials:

(4n + 8) / 2

2n + 4

200

Classify the polynomial by Degree and Number of Terms

5a2 - 6a

Degree of 2, Binomial

200

Subtract the polynomials:

(-5h - 2) - (7h +6)

-12h - 8

200

This is the GCF of 100m4n6 + 30m2n8

10m2n6

200

Multiply the Polynomials:

(-2x)(x + 2)

-2x2 - 4x

200

Divide the Polynomials:

(16x2 - 24x + 8) / 8

2x2 - 3x + 1

300

Classify the polynomial by Degree and Number of Terms

-6a4b3 + 10a3b

Degree of 7, Binomial

300

Subtract the polynomials:

(x2 +3x + 5) - ( -x2 +6x)

2x2 - 3x + 5

300

This is the situation in which exponents get multiplied.

When a power is applied to another power

300

Multiply the Polynomials:

(-3m4)(-4m2 - 6m)

12m6 + 18m5

300

Divide the Polynomials:

(25s3 + 15s) / 5s

5s2  + 3

400

The SUM of the coefficients of this polynomial

-10k3 + 2k +1

-8

400

Subtract the Polynomials:

(k2 + 6k3 -4) - (5k3 + 7k -3k2)

k3 + 4k2 -7k -4

400

This is the full simplification of (-3g3h-2)2

9g6/h4

400

Multiply the Polynomials:

(4n - 1)(5 + 3n)

12n+ 17n - 5

400

Divide the Polynomials:

(8h6 - 32h5 +16h4) / -8h4

-h2 + 4h - 2

500

What is the degree of a constant? 

Zero

500

Add the polynomials:

(-1 + x2y + 2yx2) + (1 -2xy2 + 6x2y)

9x2y - 2xy2

500

This is the fully factored form of 

12p4q- 8p5q2 + 20p3q4

4p3q2(3pq3 - 2p2 + 5q2)

500

Multiply the Polynomials:

(4a2 - b)2

16a4 - 8a2b +b2

500

Divide the Polynomials:

(3x4y2 + 6x3y - 9x2y) / 3x2y

x2y + 2x - 3