Identifying Polynomials & Degrees
Polynomials in Standard Form
Combining Terms / Simplifying
Distributing / Simplifying
Multiplying Binomials (FOIL)
100

5n3 + nq3

2nd degree

binomial 

100

4 - 3c - 5c2

-5c2 - 3c + 4

100

(2x + 3y) + (4x + 9y)

6x + 11y

100

a ( 4a + 3 )

4a2 + 3a

100

(3c - 5) (c + 3)

3c2 + 4c - 15

200

8y + 7y3

3rd degree 

binomial 

200

5x2 - 2 + 3x

5x2 + 3x - 2

200

(6k2 + 2k + 9) + (4k2 - 5k)

10k2 - 3k + 9

200

2y (y - 4)

2y2 - 8y

200

(7n - 6) (7n - 6)

49n2 - 84n + 36

300

-y3 + 3y - 3y2 + 2

3rd degree 

polynomial 

300

-9b2 + 10b - b6

- b6 - 9b2 + 10b

300

(5f + g - 2) + (-2f + 3)

3f + g + 1

300

3x (5x2 - x + 4 )

15x- 3x2 + 12x

300

(12t - 5) (12t - 5)

144t2 - 120t + 25

400

11t + 2t2 - 3 + t5

5th degree 

polynomial 

400

11t + 2t2 - 3 + t5

t5 + 2t2 + 11t - 3

400

(2x + 3x2) - (7 - 8x2)

11x+ 2x -7

400

2m2 (2m2 + 3m - 5)

4m4 + 6m3 - 10m2

400

(5r + 7) (5r - 7)

25r2 - 49

500

-9b2 + 10b - b6

6th degree 

trinomial 

500

- y3 + 3y4 - 3y2 + 2

3y4 - y3 -3y2 + 2

500

(2c2 + 6c + 4) + (5c2 -7)

7c2 + 6c + 3

500

-4b (1 - 9b - 2b2)

-4b + 36b2 + 8b3

500

(11z - 5y) (3z + 2y)

33z2 + 7zy - 10y2