Classify the polynomial by the degree and terms :
2x3
cubic monomial
Add the Polynomials
(4x + 9) +(x - 4)
5x + 5
Subtract the polynomials:
(g - 4) - (3g - 6)
-2g + 2
Multiply the Polynomials:
(x - 3)(x + 2)
x2 - x - 6
Multiply the Polynomials:
5x5(3x6 - 4x2 - 1)
15x11 - 20x7 - 5x5
Classify the polynomial by degree and terms.
- 6a - 5a2
quadratic binomial
Add the polynomials:
(-3a - 2c) + (7a + 5)
4a - 2c + 5
Subtract the polynomials:
(-5h - 2y + 13) - (7h + 13 + 6y)
-12h - 8y
Multiply the Polynomials:
(x - 3)(x + 2)
x2 - x - 6
Multiply the following Polynomials:
(3x - 2)(3x + 2)
9x2 - 4
What is the constant term?
-10k3 + k +1
1
Add the polynomials:
(x2 +3x + 5) + (-x2 + 6x - 5)
9x
Subtract the Polynomials:
(k2 + 6k3 -4) - (5k3 + 7k -3k2)
k3 + 4k2 -7k -4
Multiply the Polynomials:
(d + 3)(d2 - 4d + 1)
d3 - d2 -11d + 3
Multiply the following Polynomials:
(x - 2)(x2 + 3x - 4)
x3 + x2 - 10x + 8
Name the leading coefficient:
10a3 - 6a4
-6
Add the polynomials:
(t2 + 3t3 -3) + (2t2 +7t -2t3)
t3 +3t2 +7t -3
Subtract the Polynomials:
(5k2 - 17) - (3k - 5)2
-4k2 + 30k - 42
Multiply the Polynomials:
-3m(4m2+5m)2
-48m5 - 120m4 - 75m3
Multiply the Polynomials:
(2x - 3)(x2 + 3x + 2)
2x3 + 3x2 - 5x - 6
Classify the polynomial by degree, terms, give the leading coefficient.
4x - 9x2 + 4x3 - 5x4
quartic polynomial; -5
Add the polynomials:
(-1 + x2 + 2x - 16xy) + (12 - 2xy + 2x2)
3x2 -18xy + 2x + 11
Subtract (x+3y)2 from (3x-5y)2.
8x2 - 36xy + 16y2
Multiply the Polynomials:
(x - 8)(x + 3)(x - 1)
x3 − 6x2 − 19x + 24
Simplify the expression below:
3(2x - 8)2 + 43
12x2 - 96x + 235