transformations
Center and radius
trig identities
vectors
sum and difference
100

g(x) = x*2 +1

1 unit up

100

write in standard form

Center: (-13,-14)

Radius: 1

(x+13)*2 + (y+14)*2 = 1

100

what does sec*2 x equal

tan*2 x + 1

100

what is the magnitude formula

√(q1 - p1)^2 + (q2 + p2)^2

100

express as a trig function of a single angle

sin(97°)cos(43°) + cos(97°)sin(43°)

sin(140°)

200

g(x) = 3x*2

expand vertically

200

write in standard form

Center: (15,-8)

Area: 16π

(x-15)*2 + (y+8)*2 = 16

200

cosxcscx = ?

cotx

200

what is a terminal point

the end point of a vector

200

express as a trig function of a single angle

cos(π/6)cos(π/7) + sin(π/6)sin(π/7)

13π/42

300

g(x) = -7 + (x+3)*2

7 units down

3 units left

300

8x + x*2 - 2y = 64 - y*2

(x+4)*2 + (y-1)*2 = 9

300

what is the reciprocal of cscx?

1/sinx

300

find U from the vector R = <-4,2> to <-1,6>

<3,4>

300

find exact value of the trig angle

sin(195°)

√2 - √6/4

400

g(x) = 2 -(x+1)*2

2 units up

1 unit right

relfect over x axis

400

137 + 6y = -y*2 - x*2 -24x

(x+12)*2 + (y+3)*2 = 4

400

simplify

1 - cosx*2/cosx*2

sinx*2/cosx*2

400

find the magnitude of vector <-3, -5>

√34

400

cos(405°)

√2/2

500

g(x) = (-1/2x - 3) + 5

reflect y axis

expand horizontally

3 units right

5 units up

500

x*2 + y*2 + 14x - 12y + 4 = 0

(x+7)*2 + (y-6)*2 = 9

500

verify the following

cos*2 x - sin*2 x = 1 - 2sin*2 x

1 - 2sin*2 x

500

if U = <-1,3> what is 3u?

<-3,4>

<-3,9>

500

sin(375°)

√2 - √6/4